CS 61C: Great Ideas in Computer Architecture. Pipelining Hazards. Instructor: Senior Lecturer SOE Dan Garcia

Size: px
Start display at page:

Download "CS 61C: Great Ideas in Computer Architecture. Pipelining Hazards. Instructor: Senior Lecturer SOE Dan Garcia"

Transcription

1 CS 61C: Geat Ideas in Compute Achitectue Pipelining Hazads Instucto: Senio Lectue SOE Dan Gacia 1

2 Geat Idea #4: Paallelism So9wae Paallel Requests Assigned to compute e.g. seach Gacia Paallel Theads Assigned to coe e.g. lookup, ads Paallel InstucNons > 1 one Nme e.g. 5 pipelined instucnons Paallel Data > 1 data one Nme e.g. add of 4 pais of wods Hadwae descipnons All gates funcnoning in paallel at same Nme Leveage Paallelism & Achieve High Pefomance Hadwae Waehouse Scale Compute Coe InstucNon Unit(s) Cache Memoy Coe FuncNonal Unit(s) A 0 +B 0 A 1 +B 1 A 2 +B 2 A 3 +B 3 Compute Memoy Input/Output Coe Smat Phone Logic Gates 2

3 Review of Last Lectue ImplemenNng contolle fo you datapath Take decoded signals fom instucnon and geneate contol signals Use AND and OR Logic scheme Pipelining impoves pefomance by exploinng InstucNon Level Paallelism 5- stage pipeline fo MIPS: IF, ID, EX, MEM, WB Executes mulnple instucnons in paallel What can go wong??? 3

4 Agenda Pipelining Pefomance Stuctual Hazads Administivia Data Hazads Fowading Load Delay Slot Contol Hazads 4

5 Review: Pipelined Datapath 5

6 Pipelined ExecuNon RepesentaNon Time IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB Evey instucnon must take same numbe of steps, so some stages will idle e.g. MEM stage fo any aithmenc instucnon 6

7 Gaphical Pipeline Diagams PC MUX +4 instucnon memoy d s t imm Registe File Data memoy 1. InstucNon Fetch 2. Decode/ Registe Read 3. Execute 4. Memoy 5. Wite Back Use datapath figue below to epesent pipeline: IF ID EX Mem WB 7

8 Gaphical Pipeline RepesentaNon RegFile: leh half is wite, ight half is ead Time (clock cycles) I n I$ Reg D$ Reg s Load t I$ Reg D$ Reg Add O d e Stoe Sub O I$ Reg I$ Reg I$ D$ Reg Reg D$ Reg D$ Reg 8

9 Pipelining Pefomance (1/3) Use T c ( Nme between complenon of instucnons ) to measue speedup Equality only achieved if stages ae balanced (i.e. take the same amount of Nme) If not balanced, speedup is educed Speedup due to inceased thoughput Latency fo each instucnon does not decease 9

10 Pipelining Pefomance (2/3) Assume Nme fo stages is Inst 100ps fo egiste ead o wite 200ps fo othe stages Inst fetch Registe ead op Memoy access Registe wite Total time lw 200ps 100 ps 200ps 200ps 100 ps 800ps sw 200ps 100 ps 200ps 200ps 700ps R-fomat 200ps 100 ps 200ps 100 ps 600ps beq 200ps 100 ps 200ps 500ps What is pipelined clock ate? Compae pipelined datapath with single- cycle datapath 10

11 Pipelining Pefomance (3/3) Single- cycle T c = 800 ps Pipelined T c = 200 ps 11

12 Pipelining Hazads A hazad is a situanon that pevents stanng the next instucnon in the next clock cycle 1) Stuctual hazad A equied esouce is busy (e.g. needed in mulnple stages) 2) Data hazad Data dependency between instucnons Need to wait fo pevious instucnon to complete its data ead/wite 3) Contol hazad Flow of execunon depends on pevious instucnon 12

13 Agenda Pipelining Pefomance Stuctual Hazads Administivia Data Hazads Fowading Load Delay Slot Contol Hazads 13

14 1. Stuctual Hazads Conflict fo use of a esouce MIPS pipeline with a single memoy? Load/Stoe equies memoy access fo data InstucNon fetch would have to stall fo that cycle Causes a pipeline bubble Hence, pipelined datapaths equie sepaate instucnon/data memoies Sepaate L1 I$ and L1 D$ take cae of this 14

15 Stuctual Hazad #1: Single Memoy I n s t O d e Load Inst 1 Inst 2 Inst 3 Inst 4 Time (clock cycles) I$ Reg D$ Reg Tying to ead same memoy twice in same clock cycle 15

16 Stuctual Hazad #2: Registes (1/2) I n s t O d e Load Inst 1 Inst 2 Inst 3 Inst 4 Time (clock cycles) I$ Can we ead and wite to egistes simultaneously? Reg D$ Reg 16

17 Stuctual Hazad #2: Registes (2/2) Two diffeent solunons have been used: 1) Split RegFile access in two: Wite duing 1 st half and Read duing 2 nd half of each clock cycle Possible because RegFile access is VERY fast (takes less than half the Nme of stage) 2) Build RegFile with independent ead and wite pots Conclusion: Read and Wite to egistes duing same clock cycle is okay 17

18 Agenda Pipelining Pefomance Stuctual Hazads Administivia Data Hazads Fowading Load Delay Slot Contol Hazads 18

19 Administivia Check- in with Poject 3 19

20 Agenda Pipelining Pefomance Stuctual Hazads Administivia Data Hazads Fowading Load Delay Slot Contol Hazads 20

21 2. Data Hazads (1/2) Conside the following sequence of instucnons: add $t0, $t1, $t2 sub $t4, $t0, $t3 and $t5, $t0, $t6 o $t7, $t0, $t8 xo $t9, $t0, $t10 21

22 I n s t O d e 2. Data Hazads (2/2) Data- flow backwads in Nme ae hazads add $t0,$t1,$t2 sub $t4,$t0,$t3 and $t5,$t0,$t6 o $t7,$t0,$t8 xo $t9,$t0,$t10 Time (clock cycles) IF ID/RF EX MEM WB I$ Reg D$ Reg 22

23 Data Hazad SoluNon: Fowading Fowad esult as soon as it is available OK that it s not stoed in RegFile yet add $t0,$t1,$t2 sub $t4,$t0,$t3 and $t5,$t0,$t6 IF ID/RF EX MEM WB o $t7,$t0,$t8 xo $t9,$t0,$t10 I$ Reg D$ Reg 23

24 Datapath fo Fowading (1/2) What changes need to be made hee? 24

25 Datapath fo Fowading (2/2) Handled by fowading unit 25

26 Data Hazad: Loads (1/4) Recall: Dataflow backwads in Nme ae hazads lw $t0,0($t1) IF ID/RF EX MEM WB sub $t3,$t0,$t2 Can t solve all cases with fowading Must stall instucnon dependent on load, then fowad (moe hadwae) 26

27 Data Hazad: Loads (2/4) Hadwae stalls pipeline Called hadwae intelock lw $t0, 0($t1) IF ID/RF EX MEM WB SchemaNcally, this is what we want, but in eality stalls done hoizontally sub $t3,$t0,$t2 and $t5,$t0,$t4 bub ble I$ bub Reg D$ Reg ble How to stall just pat of pipeline? bub ble o $t7,$t0,$t6 I$ Reg D$ 27

28 Data Hazad: Loads (3/4) Stall is equivalent to nop lw $t0, 0($t1) nop bub ble bub ble bub ble bub ble bub ble sub $t3,$t0,$t2 and $t5,$t0,$t4 o $t7,$t0,$t6 I$ Reg D$ 28

29 Data Hazad: Loads (4/4) Slot ahe a load is called a load delay slot If that instucnon uses the esult of the load, then the hadwae intelock will stall it fo one cycle Lesng the hadwae stall the instucnon in the delay slot is equivalent to pusng a nop in the slot (except the late uses moe code space) Idea: Let the compile put an unelated instucnon in that slot à no stall! 29

30 Code Scheduling to Avoid Stalls Reode code to avoid use of load esult in the next instucnon! MIPS code fo D=A+B; E=A+C; Stall! Stall! # Method 1: lw $t1, 0($t0) lw $t2, 4($t0) add $t3, $t1, $t2 sw $t3, 12($t0) # Method 2: lw $t1, 0($t0) lw $t2, 4($t0) lw $t4, 8($t0) add $t3, $t1, $t2 lw $t4, 8($t0) sw $t3, 12($t0) add $t5, $t1, $t4 add $t5, $t1, $t4 sw $t5, 16($t0) sw $t5, 16($t0) 13 cycles 11 cycles 30

31 Agenda Moe Pipelining Stuctual Hazads Administivia Data Hazads Fowading Load Delay Slot Contol Hazads 31

32 3. Contol Hazads Banch (beq, bne) detemines flow of contol Fetching next instucnon depends on banch outcome Pipeline can t always fetch coect instucnon SNll woking on ID stage of banch Simple SoluIon: Stall on evey banch unnl we have the new PC value How long must we stall? 32

33 Banch Stall When is compaison esult available? I n s t O d e beq Inst 1 Inst 2 Inst 3 Inst 4 Time (clock cycles) I$ Reg D$ Reg TWO bubbles equied pe banch! 33

34 Summay Hazads educe effecnveness of pipelining Cause stalls/bubbles Stuctual Hazads Conflict in use of datapath component Data Hazads Need to wait fo esult of a pevious instucnon Contol Hazads Addess of next instucnon uncetain/unknown Moe to come next lectue! 34

35 QuesIon: Fo each code sequences below, choose one of the statements below: 1: lw $t0,0($t0) add $t1,$t0,$t0 2: add $t1,$t0,$t0 addi $t2,$t0,5 addi $t4,$t1,5 3: addi $t1,$t0,1 addi $t2,$t0,2 addi $t3,$t0,2 addi $t3,$t0,4 addi $t5,$t1,5 A) B) C) No stalls as is No stalls with fowading Must stall 35

36 I n s t O d e lw add inst inst inst Code Sequence 1 Time (clock cycles) I$ Must stall Reg D$ Reg 36

37 I n s t O d e add addi addi inst inst Code Sequence 2 Time (clock cycles) fowading I$ no fowading Reg D$ Reg No stalls with fowading 37

38 I n s t O d e addi addi addi addi addi Code Sequence 3 Time (clock cycles) I$ Reg D$ Reg No stalls as is 38

UCB CS61C : Machine Structures

UCB CS61C : Machine Structures inst.eecs.bekeley.edu/~cs61c UCB CS61C : Machine Stuctues Lectue SOE Dan Gacia Lectue 28 CPU Design : Pipelining to Impove Pefomance 2010-04-05 Stanfod Reseaches have invented a monitoing technique called

More information

Lecture 8 Introduction to Pipelines Adapated from slides by David Patterson

Lecture 8 Introduction to Pipelines Adapated from slides by David Patterson Lectue 8 Intoduction to Pipelines Adapated fom slides by David Patteson http://www-inst.eecs.bekeley.edu/~cs61c/ * 1 Review (1/3) Datapath is the hadwae that pefoms opeations necessay to execute pogams.

More information

COSC 6385 Computer Architecture. - Pipelining

COSC 6385 Computer Architecture. - Pipelining COSC 6385 Compute Achitectue - Pipelining Sping 2012 Some of the slides ae based on a lectue by David Culle, Pipelining Pipelining is an implementation technique wheeby multiple instuctions ae ovelapped

More information

Introduction To Pipelining. Chapter Pipelining1 1

Introduction To Pipelining. Chapter Pipelining1 1 Intoduction To Pipelining Chapte 6.1 - Pipelining1 1 Mooe s Law Mooe s Law says that the numbe of pocessos on a chip doubles about evey 18 months. Given the data on the following two slides, is this tue?

More information

The Processor: Improving Performance Data Hazards

The Processor: Improving Performance Data Hazards The Pocesso: Impoving Pefomance Data Hazads Monday 12 Octobe 15 Many slides adapted fom: and Design, Patteson & Hennessy 5th Edition, 2014, MK and fom Pof. May Jane Iwin, PSU Summay Pevious Class Pipeline

More information

Computer Science 141 Computing Hardware

Computer Science 141 Computing Hardware Compute Science 141 Computing Hadwae Fall 2006 Havad Univesity Instucto: Pof. David Books dbooks@eecs.havad.edu [MIPS Pipeline Slides adapted fom Dave Patteson s UCB CS152 slides and May Jane Iwin s CSE331/431

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hadwae Oganization and Design Lectue 16: Pipelining Adapted fom Compute Oganization and Design, Patteson & Hennessy, UCB Last time: single cycle data path op System clock affects pimaily the Pogam

More information

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards CISC 662 Gaduate Compute Achitectue Lectue 6 - Hazads Michela Taufe http://www.cis.udel.edu/~taufe/teaching/cis662f07 Powepoint Lectue Notes fom John Hennessy and David Patteson s: Compute Achitectue,

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Instruc>on Level Parallelism

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Instruc>on Level Parallelism Agenda CS 61C: Geat Ideas in Compute Achitectue (Machine Stuctues) Instuc>on Level Paallelism Instuctos: Randy H. Katz David A. PaJeson hjp://inst.eecs.bekeley.edu/~cs61c/fa10 Review Instuc>on Set Design

More information

Administrivia. CMSC 411 Computer Systems Architecture Lecture 5. Data Hazard Even with Forwarding Figure A.9, Page A-20

Administrivia. CMSC 411 Computer Systems Architecture Lecture 5. Data Hazard Even with Forwarding Figure A.9, Page A-20 Administivia CMSC 411 Compute Systems Achitectue Lectue 5 Basic Pipelining (cont.) Alan Sussman als@cs.umd.edu as@csu dedu Homewok poblems fo Unit 1 due today Homewok poblems fo Unit 3 posted soon CMSC

More information

CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards

CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Pipelined Execution Representation Time

More information

Chapter 4 (Part III) The Processor: Datapath and Control (Pipeline Hazards)

Chapter 4 (Part III) The Processor: Datapath and Control (Pipeline Hazards) Chapte 4 (Pat III) The Pocesso: Datapath and Contol (Pipeline Hazads) 陳瑞奇 (J.C. Chen) 亞洲大學資訊工程學系 Adapted fom class notes by Pof. M.J. Iwin, PSU and Pof. D. Patteson, UCB 1 吃感冒藥副作用怎麼辦? http://big5.sznews.com/health/images/attachement/jpg/site3/20120319/001558d90b3310d0c1683e.jpg

More information

CMCS Mohamed Younis CMCS 611, Advanced Computer Architecture 1

CMCS Mohamed Younis CMCS 611, Advanced Computer Architecture 1 CMCS 611-101 Advanced Compute Achitectue Lectue 6 Intoduction to Pipelining Septembe 23, 2009 www.csee.umbc.edu/~younis/cmsc611/cmsc611.htm Mohamed Younis CMCS 611, Advanced Compute Achitectue 1 Pevious

More information

Computer Architecture. Pipelining and Instruction Level Parallelism An Introduction. Outline of This Lecture

Computer Architecture. Pipelining and Instruction Level Parallelism An Introduction. Outline of This Lecture Compute Achitectue Pipelining and nstuction Level Paallelism An ntoduction Adapted fom COD2e by Hennessy & Patteson Slide 1 Outline of This Lectue ntoduction to the Concept of Pipelined Pocesso Pipelined

More information

Lecture #22 Pipelining II, Cache I

Lecture #22 Pipelining II, Cache I inst.eecs.bekeley.edu/~cs61c CS61C : Machine Stuctues Lectue #22 Pipelining II, Cache I Wiewold cicuits 2008-7-29 http://www.maa.og/editoial/mathgames/mathgames_05_24_04.html http://www.quinapalus.com/wi-index.html

More information

You Are Here! Review: Hazards. Agenda. Agenda. Review: Load / Branch Delay Slots 7/28/2011

You Are Here! Review: Hazards. Agenda. Agenda. Review: Load / Branch Delay Slots 7/28/2011 CS 61C: Geat Ideas in Compute Achitectue (Machine Stuctues) Instuction Level Paallelism: Multiple Instuction Issue Guest Lectue: Justin Hsia Softwae Paallel Requests Assigned to compute e.g., Seach Katz

More information

COEN-4730 Computer Architecture Lecture 2 Review of Instruction Sets and Pipelines

COEN-4730 Computer Architecture Lecture 2 Review of Instruction Sets and Pipelines 1 COEN-4730 Compute Achitectue Lectue 2 Review of nstuction Sets and Pipelines Cistinel Ababei Dept. of Electical and Compute Engineeing Maquette Univesity Cedits: Slides adapted fom pesentations of Sudeep

More information

CS 61C: Great Ideas in Computer Architecture Instruc(on Level Parallelism: Mul(ple Instruc(on Issue

CS 61C: Great Ideas in Computer Architecture Instruc(on Level Parallelism: Mul(ple Instruc(on Issue CS 61C: Geat Ideas in Compute Achitectue Instuc(on Level Paallelism: Mul(ple Instuc(on Issue Instuctos: Kste Asanovic, Randy H. Katz hbp://inst.eecs.bekeley.edu/~cs61c/fa12 1 Paallel Requests Assigned

More information

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin. School of Information Science and Technology SIST

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin.   School of Information Science and Technology SIST CS 110 Computer Architecture Pipelining Guest Lecture: Shu Yin http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University Slides based on UC Berkley's CS61C

More information

CENG 3420 Computer Organization and Design. Lecture 07: MIPS Processor - II. Bei Yu

CENG 3420 Computer Organization and Design. Lecture 07: MIPS Processor - II. Bei Yu CENG 3420 Compute Oganization and Design Lectue 07: MIPS Pocesso - II Bei Yu CEG3420 L07.1 Sping 2016 Review: Instuction Citical Paths q Calculate cycle time assuming negligible delays (fo muxes, contol

More information

CENG 3420 Lecture 07: Pipeline

CENG 3420 Lecture 07: Pipeline CENG 3420 Lectue 07: Pipeline Bei Yu byu@cse.cuhk.edu.hk CENG3420 L07.1 Sping 2017 Outline q Review: Flip-Flop Contol Signals q Pipeline Motivations q Pipeline Hazads q Exceptions CENG3420 L07.2 Sping

More information

CS 2461: Computer Architecture 1 Program performance and High Performance Processors

CS 2461: Computer Architecture 1 Program performance and High Performance Processors Couse Objectives: Whee ae we. CS 2461: Pogam pefomance and High Pefomance Pocessos Instucto: Pof. Bhagi Naahai Bits&bytes: Logic devices HW building blocks Pocesso: ISA, datapath Using building blocks

More information

Lecture Topics ECE 341. Lecture # 12. Control Signals. Control Signals for Datapath. Basic Processing Unit. Pipelining

Lecture Topics ECE 341. Lecture # 12. Control Signals. Control Signals for Datapath. Basic Processing Unit. Pipelining EE 341 Lectue # 12 Instucto: Zeshan hishti zeshan@ece.pdx.edu Novembe 10, 2014 Potland State Univesity asic Pocessing Unit ontol Signals Hadwied ontol Datapath contol signals Dealing with memoy delay Pipelining

More information

CSE4201. Computer Architecture

CSE4201. Computer Architecture CSE 4201 Compute Achitectue Pof. Mokhta Aboelaze Pats of these slides ae taken fom Notes by Pof. David Patteson at UCB Outline MIPS and instuction set Simple pipeline in MIPS Stuctual and data hazads Fowading

More information

Review from last lecture

Review from last lecture CSE820 Gaduate Compute Achitectue Week 3 Pefomance + Pipeline Review Based on slides by David Patteson Review fom last lectue Tacking and extapolating technology pat of achitect s esponsibility Expect

More information

User Visible Registers. CPU Structure and Function Ch 11. General CPU Organization (4) Control and Status Registers (5) Register Organisation (4)

User Visible Registers. CPU Structure and Function Ch 11. General CPU Organization (4) Control and Status Registers (5) Register Organisation (4) PU Stuctue and Function h Geneal Oganisation Registes Instuction ycle Pipelining anch Pediction Inteupts Use Visible Registes Vaies fom one achitectue to anothe Geneal pupose egiste (GPR) ata, addess,

More information

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle?

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle? CSE 2021: Computer Organization Single Cycle (Review) Lecture-10b CPU Design : Pipelining-1 Overview, Datapath and control Shakil M. Khan 2 Single Cycle with Jump Multi-Cycle Implementation Instruction:

More information

Pipelining. CSC Friday, November 6, 2015

Pipelining. CSC Friday, November 6, 2015 Pipelining CSC 211.01 Friday, November 6, 2015 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory register file ALU data memory register file Not

More information

1 Hazards COMP2611 Fall 2015 Pipelined Processor

1 Hazards COMP2611 Fall 2015 Pipelined Processor 1 Hazards Dependences in Programs 2 Data dependence Example: lw $1, 200($2) add $3, $4, $1 add can t do ID (i.e., read register $1) until lw updates $1 Control dependence Example: bne $1, $2, target add

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #19: Pipelining II 2005-07-21 Andy Carle CS 61C L19 Pipelining II (1) Review: Datapath for MIPS PC instruction memory rd rs rt registers

More information

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14 MIPS Pipelining Computer Organization Architectures for Embedded Computing Wednesday 8 October 14 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition, 2011, MK

More information

Processor (II) - pipelining. Hwansoo Han

Processor (II) - pipelining. Hwansoo Han Processor (II) - pipelining Hwansoo Han Pipelining Analogy Pipelined laundry: overlapping execution Parallelism improves performance Four loads: Speedup = 8/3.5 =2.3 Non-stop: 2n/0.5n + 1.5 4 = number

More information

A Memory Efficient Array Architecture for Real-Time Motion Estimation

A Memory Efficient Array Architecture for Real-Time Motion Estimation A Memoy Efficient Aay Achitectue fo Real-Time Motion Estimation Vasily G. Moshnyaga and Keikichi Tamau Depatment of Electonics & Communication, Kyoto Univesity Sakyo-ku, Yoshida-Honmachi, Kyoto 66-1, JAPAN

More information

Full Datapath. Chapter 4 The Processor 2

Full Datapath. Chapter 4 The Processor 2 Pipelining Full Datapath Chapter 4 The Processor 2 Datapath With Control Chapter 4 The Processor 3 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory

More information

CENG 3531 Computer Architecture Spring a. T / F A processor can have different CPIs for different programs.

CENG 3531 Computer Architecture Spring a. T / F A processor can have different CPIs for different programs. Exam 2 April 12, 2012 You have 80 minutes to complete the exam. Please write your answers clearly and legibly on this exam paper. GRADE: Name. Class ID. 1. (22 pts) Circle the selected answer for T/F and

More information

CS2100 Computer Organisation Tutorial #10: Pipelining Answers to Selected Questions

CS2100 Computer Organisation Tutorial #10: Pipelining Answers to Selected Questions CS2100 Computer Organisation Tutorial #10: Pipelining Answers to Selected Questions Tutorial Questions 2. [AY2014/5 Semester 2 Exam] Refer to the following MIPS program: # register $s0 contains a 32-bit

More information

Review: Moore s Law. EECS 252 Graduate Computer Architecture Lecture 2. Review: Joy s Law in ManyCore world. Bell s Law new class per decade

Review: Moore s Law. EECS 252 Graduate Computer Architecture Lecture 2. Review: Joy s Law in ManyCore world. Bell s Law new class per decade EECS 252 Gaduate Compute Achitectue Lectue 2 ℵ 0 Review of Instuction Sets, Pipelines, and Caches Januay 26 th, 2009 Review Mooe s Law John Kubiatowicz Electical Engineeing and Compute Sciences Univesity

More information

Pipelining Analogy. Pipelined laundry: overlapping execution. Parallelism improves performance. Four loads: Non-stop: Speedup = 8/3.5 = 2.3.

Pipelining Analogy. Pipelined laundry: overlapping execution. Parallelism improves performance. Four loads: Non-stop: Speedup = 8/3.5 = 2.3. Pipelining Analogy Pipelined laundry: overlapping execution Parallelism improves performance Four loads: Speedup = 8/3.5 = 2.3 Non-stop: Speedup =2n/05n+15 2n/0.5n 1.5 4 = number of stages 4.5 An Overview

More information

Pipelined CPUs. Study Chapter 4 of Text. Where are the registers?

Pipelined CPUs. Study Chapter 4 of Text. Where are the registers? Pipelined CPUs Where are the registers? Study Chapter 4 of Text Second Quiz on Friday. Covers lectures 8-14. Open book, open note, no computers or calculators. L17 Pipelined CPU I 1 Review of CPU Performance

More information

COSC 6385 Computer Architecture - Pipelining

COSC 6385 Computer Architecture - Pipelining COSC 6385 Computer Architecture - Pipelining Fall 2006 Some of the slides are based on a lecture by David Culler, Instruction Set Architecture Relevant features for distinguishing ISA s Internal storage

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

L19 Pipelined CPU I 1. Where are the registers? Study Chapter 6 of Text. Pipelined CPUs. Comp 411 Fall /07/07

L19 Pipelined CPU I 1. Where are the registers? Study Chapter 6 of Text. Pipelined CPUs. Comp 411 Fall /07/07 Pipelined CPUs Where are the registers? Study Chapter 6 of Text L19 Pipelined CPU I 1 Review of CPU Performance MIPS = Millions of Instructions/Second MIPS = Freq CPI Freq = Clock Frequency, MHz CPI =

More information

CS 251, Winter 2018, Assignment % of course mark

CS 251, Winter 2018, Assignment % of course mark CS 251, Winter 2018, Assignment 5.0.4 3% of course mark Due Wednesday, March 21st, 4:30PM Lates accepted until 10:00am March 22nd with a 15% penalty 1. (10 points) The code sequence below executes on a

More information

CS 230 Practice Final Exam & Actual Take-home Question. Part I: Assembly and Machine Languages (22 pts)

CS 230 Practice Final Exam & Actual Take-home Question. Part I: Assembly and Machine Languages (22 pts) Part I: Assembly and Machine Languages (22 pts) 1. Assume that assembly code for the following variable definitions has already been generated (and initialization of A and length). int powerof2; /* powerof2

More information

High performance CUDA based CNN image processor

High performance CUDA based CNN image processor High pefomance UDA based NN image pocesso GEORGE VALENTIN STOIA, RADU DOGARU, ELENA RISTINA STOIA Depatment of Applied Electonics and Infomation Engineeing Univesity Politehnica of Buchaest -3, Iuliu Maniu

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Pipelining James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy What is Pipelining? Pipelining

More information

CS3350B Computer Architecture Quiz 3 March 15, 2018

CS3350B Computer Architecture Quiz 3 March 15, 2018 CS3350B Computer Architecture Quiz 3 March 15, 2018 Student ID number: Student Last Name: Question 1.1 1.2 1.3 2.1 2.2 2.3 Total Marks The quiz consists of two exercises. The expected duration is 30 minutes.

More information

Chapter 4 The Processor 1. Chapter 4A. The Processor

Chapter 4 The Processor 1. Chapter 4A. The Processor Chapter 4 The Processor 1 Chapter 4A The Processor Chapter 4 The Processor 2 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Advanced Parallel Architecture Lessons 5 and 6. Annalisa Massini /2017

Advanced Parallel Architecture Lessons 5 and 6. Annalisa Massini /2017 Advanced Parallel Architecture Lessons 5 and 6 Annalisa Massini - Pipelining Hennessy, Patterson Computer architecture A quantitive approach Appendix C Sections C.1, C.2 Pipelining Pipelining is an implementation

More information

CS 251, Winter 2019, Assignment % of course mark

CS 251, Winter 2019, Assignment % of course mark CS 251, Winter 2019, Assignment 5.1.1 3% of course mark Due Wednesday, March 27th, 5:30PM Lates accepted until 1:00pm March 28th with a 15% penalty 1. (10 points) The code sequence below executes on a

More information

ELE 655 Microprocessor System Design

ELE 655 Microprocessor System Design ELE 655 Microprocessor System Design Section 2 Instruction Level Parallelism Class 1 Basic Pipeline Notes: Reg shows up two places but actually is the same register file Writes occur on the second half

More information

Computer Organization and Structure

Computer Organization and Structure Computer Organization and Structure 1. Assuming the following repeating pattern (e.g., in a loop) of branch outcomes: Branch outcomes a. T, T, NT, T b. T, T, T, NT, NT Homework #4 Due: 2014/12/9 a. What

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 13: Pipelining. Krste Asanović & Randy Katz

CS 61C: Great Ideas in Computer Architecture. Lecture 13: Pipelining. Krste Asanović & Randy Katz CS 61C: Great Ideas in Computer Architecture Lecture 13: Pipelining Krste Asanović & Randy Katz http://inst.eecs.berkeley.edu/~cs61c/fa17 RISC-V Pipeline Pipeline Control Hazards Structural Data R-type

More information

Department of Computer and IT Engineering University of Kurdistan. Computer Architecture Pipelining. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Computer Architecture Pipelining. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Computer Architecture Pipelining By: Dr. Alireza Abdollahpouri Pipelined MIPS processor Any instruction set can be implemented in many

More information

Chapter 4 The Processor 1. Chapter 4B. The Processor

Chapter 4 The Processor 1. Chapter 4B. The Processor Chapter 4 The Processor 1 Chapter 4B The Processor Chapter 4 The Processor 2 Control Hazards Branch determines flow of control Fetching next instruction depends on branch outcome Pipeline can t always

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Basic Instruction Timings. Pipelining 1. How long would it take to execute the following sequence of instructions?

Basic Instruction Timings. Pipelining 1. How long would it take to execute the following sequence of instructions? Basic Instruction Timings Pipelining 1 Making some assumptions regarding the operation times for some of the basic hardware units in our datapath, we have the following timings: Instruction class Instruction

More information

Instruction word R0 R1 R2 R3 R4 R5 R6 R8 R12 R31

Instruction word R0 R1 R2 R3 R4 R5 R6 R8 R12 R31 4.16 Exercises 419 Exercise 4.11 In this exercise we examine in detail how an instruction is executed in a single-cycle datapath. Problems in this exercise refer to a clock cycle in which the processor

More information

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor.

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor. COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor - Introduction

More information

LECTURE 3: THE PROCESSOR

LECTURE 3: THE PROCESSOR LECTURE 3: THE PROCESSOR Abridged version of Patterson & Hennessy (2013):Ch.4 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU

More information

COMPUTER ORGANIZATION AND DESI

COMPUTER ORGANIZATION AND DESI COMPUTER ORGANIZATION AND DESIGN 5 Edition th The Hardware/Software Interface Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count Determined by ISA and compiler

More information

Pre-requisites. This is a textbook-based course. Chapter 1. Pipelines, Performance, Caches, and Virtual Memory. January 2009 Paul H J Kelly

Pre-requisites. This is a textbook-based course. Chapter 1. Pipelines, Performance, Caches, and Virtual Memory. January 2009 Paul H J Kelly 332 Advanced Compute Achitectue Chapte 1 Intoduction and eview of Pipelines, Pefomance, Caches, and Vitual Januay 2009 Paul H J Kelly These lectue notes ae patly based on the couse text, Hennessy and Patteson

More information

Pipeline Hazards. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Pipeline Hazards. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Pipeline Hazards Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Hazards What are hazards? Situations that prevent starting the next instruction

More information

DYNAMIC STORAGE ALLOCATION. Hanan Samet

DYNAMIC STORAGE ALLOCATION. Hanan Samet ds0 DYNAMIC STORAGE ALLOCATION Hanan Samet Compute Science Depatment and Cente fo Automation Reseach and Institute fo Advanced Compute Studies Univesity of Mayland College Pak, Mayland 07 e-mail: hjs@umiacs.umd.edu

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

Pipelined Processor Design

Pipelined Processor Design Pipelined Processor Design Pipelined Implementation: MIPS Virendra Singh Indian Institute of Science Bangalore virendra@computer.org Lecture 20 SE-273: Processor Design Courtesy: Prof. Vishwani Agrawal

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition The Processor - Introduction

More information

Midnight Laundry. IC220 Set #19: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Return to Chapter 4

Midnight Laundry. IC220 Set #19: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Return to Chapter 4 IC220 Set #9: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life Return to Chapter 4 Midnight Laundry Task order A B C D 6 PM 7 8 9 0 2 2 AM 2 Smarty Laundry Task order A B C D 6 PM

More information

Full Datapath. Chapter 4 The Processor 2

Full Datapath. Chapter 4 The Processor 2 Pipelining Full Datapath Chapter 4 The Processor 2 Datapath With Control Chapter 4 The Processor 3 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory

More information

LECTURE 10. Pipelining: Advanced ILP

LECTURE 10. Pipelining: Advanced ILP LECTURE 10 Pipelining: Advanced ILP EXCEPTIONS An exception, or interrupt, is an event other than regular transfers of control (branches, jumps, calls, returns) that changes the normal flow of instruction

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 17: Pipelining Wrapup Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Outline The textbook includes lots of information Focus on

More information

Final Exam Fall 2007

Final Exam Fall 2007 ICS 233 - Computer Architecture & Assembly Language Final Exam Fall 2007 Wednesday, January 23, 2007 7:30 am 10:00 am Computer Engineering Department College of Computer Sciences & Engineering King Fahd

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN 5 Edition th The Hardware/Software Interface Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count CPI and Cycle time Determined

More information

Thomas Polzer Institut für Technische Informatik

Thomas Polzer Institut für Technische Informatik Thomas Polzer tpolzer@ecs.tuwien.ac.at Institut für Technische Informatik Pipelined laundry: overlapping execution Parallelism improves performance Four loads: Speedup = 8/3.5 = 2.3 Non-stop: Speedup =

More information

Lecture 9. Pipeline Hazards. Christos Kozyrakis Stanford University

Lecture 9. Pipeline Hazards. Christos Kozyrakis Stanford University Lecture 9 Pipeline Hazards Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee18b 1 Announcements PA-1 is due today Electronic submission Lab2 is due on Tuesday 2/13 th Quiz1 grades will

More information

Computer Architecture CS372 Exam 3

Computer Architecture CS372 Exam 3 Name: Computer Architecture CS372 Exam 3 This exam has 7 pages. Please make sure you have all of them. Write your name on this page and initials on every other page now. You may only use the green card

More information

MapReduce Optimizations and Algorithms 2015 Professor Sasu Tarkoma

MapReduce Optimizations and Algorithms 2015 Professor Sasu Tarkoma apreduce Optimizations and Algoithms 2015 Pofesso Sasu Takoma www.cs.helsinki.fi Optimizations Reduce tasks cannot stat befoe the whole map phase is complete Thus single slow machine can slow down the

More information

CS 2506 Computer Organization II Test 2

CS 2506 Computer Organization II Test 2 Instructions: Print your name in the space provided below. This examination is closed book and closed notes, aside from the permitted one-page formula sheet. No calculators or other computing devices may

More information

COMP2611: Computer Organization. The Pipelined Processor

COMP2611: Computer Organization. The Pipelined Processor COMP2611: Computer Organization The 1 2 Background 2 High-Performance Processors 3 Two techniques for designing high-performance processors by exploiting parallelism: Multiprocessing: parallelism among

More information

Final Exam Fall 2008

Final Exam Fall 2008 COE 308 Computer Architecture Final Exam Fall 2008 page 1 of 8 Saturday, February 7, 2009 7:30 10:00 AM Computer Engineering Department College of Computer Sciences & Engineering King Fahd University of

More information

DYNAMIC STORAGE ALLOCATION. Hanan Samet

DYNAMIC STORAGE ALLOCATION. Hanan Samet ds0 DYNAMIC STORAGE ALLOCATION Hanan Samet Compute Science Depatment and Cente fo Automation Reseach and Institute fo Advanced Compute Studies Univesity of Mayland College Pak, Mayland 074 e-mail: hjs@umiacs.umd.edu

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 32: Pipeline Parallelism 3

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 32: Pipeline Parallelism 3 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 32: Pipeline Parallelism 3 Instructor: Dan Garcia inst.eecs.berkeley.edu/~cs61c! Compu@ng in the News At a laboratory in São Paulo,

More information

Lecture Topics. Announcements. Today: Data and Control Hazards (P&H ) Next: continued. Exam #1 returned. Milestone #5 (due 2/27)

Lecture Topics. Announcements. Today: Data and Control Hazards (P&H ) Next: continued. Exam #1 returned. Milestone #5 (due 2/27) Lecture Topics Today: Data and Control Hazards (P&H 4.7-4.8) Next: continued 1 Announcements Exam #1 returned Milestone #5 (due 2/27) Milestone #6 (due 3/13) 2 1 Review: Pipelined Implementations Pipelining

More information

CS 61C: Great Ideas in Computer Architecture Control and Pipelining

CS 61C: Great Ideas in Computer Architecture Control and Pipelining CS 6C: Great Ideas in Computer Architecture Control and Pipelining Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs6c/sp6 Datapath Control Signals ExtOp: zero, sign

More information

CSEE 3827: Fundamentals of Computer Systems

CSEE 3827: Fundamentals of Computer Systems CSEE 3827: Fundamentals of Computer Systems Lecture 21 and 22 April 22 and 27, 2009 martha@cs.columbia.edu Amdahl s Law Be aware when optimizing... T = improved Taffected improvement factor + T unaffected

More information

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Introduction Chapter 4.1 Chapter 4.2 Review: MIPS (RISC) Design Principles Simplicity favors regularity fixed size instructions small number

More information

Pipelined Processor Design

Pipelined Processor Design Pipelined Processor Design Pipelined Implementation: MIPS Virendra Singh Computer Design and Test Lab. Indian Institute of Science (IISc) Bangalore virendra@computer.org Advance Computer Architecture http://www.serc.iisc.ernet.in/~viren/courses/aca/aca.htm

More information

Any modern computer system will incorporate (at least) two levels of storage:

Any modern computer system will incorporate (at least) two levels of storage: 1 Any moden compute system will incopoate (at least) two levels of stoage: pimay stoage: andom access memoy (RAM) typical capacity 32MB to 1GB cost pe MB $3. typical access time 5ns to 6ns bust tansfe

More information

ECE 154A Introduction to. Fall 2012

ECE 154A Introduction to. Fall 2012 ECE 154A Introduction to Computer Architecture Fall 2012 Dmitri Strukov Lecture 10 Floating point review Pipelined design IEEE Floating Point Format single: 8 bits double: 11 bits single: 23 bits double:

More information

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards CISC 662 Graduate Computer Architecture Lecture 6 - Hazards Michela Taufer http://www.cis.udel.edu/~taufer/teaching/cis662f07 Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer

More information

Modern Computer Architecture

Modern Computer Architecture Modern Computer Architecture Lecture2 Pipelining: Basic and Intermediate Concepts Hongbin Sun 国家集成电路人才培养基地 Xi an Jiaotong University Pipelining: Its Natural! Laundry Example Ann, Brian, Cathy, Dave each

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #22 CPU Design: Pipelining to Improve Performance II 2007-8-1 Scott Beamer, Instructor CS61C L22 CPU Design : Pipelining to Improve Performance

More information

EI338: Computer Systems and Engineering (Computer Architecture & Operating Systems)

EI338: Computer Systems and Engineering (Computer Architecture & Operating Systems) EI338: Computer Systems and Engineering (Computer Architecture & Operating Systems) Chentao Wu 吴晨涛 Associate Professor Dept. of Computer Science and Engineering Shanghai Jiao Tong University SEIEE Building

More information

ECE Exam II - Solutions November 8 th, 2017

ECE Exam II - Solutions November 8 th, 2017 ECE 3056 Exam II - Solutions November 8 th, 2017 1. (15 pts) To the base pipeline we add data forwarding to EX, data hazard detection and stall generation, and branches implemented in MEM and predicted

More information

Computer Architecture

Computer Architecture Lecture 3: Pipelining Iakovos Mavroidis Computer Science Department University of Crete 1 Previous Lecture Measurements and metrics : Performance, Cost, Dependability, Power Guidelines and principles in

More information

Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard

Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard Consider: a = b + c; d = e - f; Assume loads have a latency of one clock cycle:

More information

Lecture 7 Pipelining. Peng Liu.

Lecture 7 Pipelining. Peng Liu. Lecture 7 Pipelining Peng Liu liupeng@zju.edu.cn 1 Review: The Single Cycle Processor 2 Review: Given Datapath,RTL -> Control Instruction Inst Memory Adr Op Fun Rt

More information

Instruction Level Parallelism. Appendix C and Chapter 3, HP5e

Instruction Level Parallelism. Appendix C and Chapter 3, HP5e Instruction Level Parallelism Appendix C and Chapter 3, HP5e Outline Pipelining, Hazards Branch prediction Static and Dynamic Scheduling Speculation Compiler techniques, VLIW Limits of ILP. Implementation

More information