Lecture 8 Introduction to Pipelines Adapated from slides by David Patterson

Size: px
Start display at page:

Download "Lecture 8 Introduction to Pipelines Adapated from slides by David Patterson"

Transcription

1 Lectue 8 Intoduction to Pipelines Adapated fom slides by David Patteson * 1

2 Review (1/3) Datapath is the hadwae that pefoms opeations necessay to execute pogams. Contol instucts datapath on what to do next. Datapath needs: access to stoage (geneal pupose egistes and memoy) computational ability () helpe hadwae (local egistes and PC) * 2

3 Review (2/3) Five stages of datapath (executing an instuction): 1. Instuction Fetch (Incement PC) 2. Instuction Decode (Read Registes) 3. (Computation) 4. Memoy Access 5. Wite to Registes ALL instuctions must go though ALL five stages. Datapath designed in hadwae. * 3

4 Example Datapath PC instuction memoy d s t egistes Data memoy +4 imm 1. Instuction Fetch 2. Decode/ Registe Read 3. Execute 4. Memoy 5. Wite Back * 4

5 Outline Pipelining Analogy Pipelining Instuction Execution Hazads Advanced Pipelining Concepts by Analogy * 5

6 Gotta Do Laundy Ann, Bian, Cathy, Dave each have one load of clothes to wash, dy, fold, and put away Washe takes 30 minutes Dye takes 30 minutes A B C D Folde takes 30 minutes Stashe takes 30 minutes to put clothes into dawes * 6

7 Sequential Laundy 6 PM AM T a s k O d e A B C D Time Sequential laundy takes 8 hous fo 4 loads * 7

8 Pipelined Laundy 12 2 AM 6 PM T a s k O d e A B C D Time Pipelined laundy takes 3.5 hous fo 4 loads! * 8

9 Geneal Definitions Latency: time to completely execute a cetain task fo example, time to ead a secto fom disk is disk access time o disk latency Thoughput: amount of wok that can be done ove a peiod of time * 9

10 T a s k O d e Pipelining Lessons (1/2) Pipelining doesn t help 6 PM latency of single task, it helps thoughput of Time entie wokload A B C D Multiple tasks opeating simultaneously using diffeent esouces Potential speedup = Numbe pipe stages Time to fill pipeline and time to dain it educes speedup: 2.3X v. 4X in this example * 10

11 T a s k O d e Pipelining Lessons (2/2) Suppose new 6 PM A B C D Time Washe takes 20 minutes, new Stashe takes 20 minutes. How much faste is pipeline? Pipeline ate limited by slowest pipeline stage Unbalanced lengths of pipe stages also educes speedup * 11

12 Steps in Executing MIPS 1) IFetch: Fetch Instuction, Incement PC 2) Decode Instuction, Read Registes 3) Execute: Mem-ef: Calculate Addess Aith-log: Pefom Opeation 4) Memoy: Load: Stoe: Read Data fom Memoy Wite Data to Memoy 5) Wite Back: Wite Data to Registe * 12

13 Pipelined Execution Repesentation Time IFtch Dcd Exec Mem WB IFtch Dcd Exec Mem WB IFtch Dcd Exec Mem WB IFtch Dcd Exec Mem WB IFtch Dcd Exec Mem WB IFtch Dcd Exec Mem WB Evey instuction must take same numbe of steps, also called pipeline stages, so some will go idle sometimes * 13

14 Review: Datapath fo MIPS PC +4 instuction memoy Stage 1 Stage 2 Stage 3Stage 4 Stage 5 1. Instuction Fetch d s t imm Use datapath figue to epesent pipeline IFtch Dcd egistes 2. Decode/ Registe Read Exec Mem WB Data memoy 3. Execute 4. Memoy5. Wite Back I$ Reg D$ Reg * 14

15 I n s t. O d e Gaphical Pipeline Repesentation (In Reg, ight half highlight ead, left half wite) Time (clock cycles) Load Add Stoe Sub O I$ Reg I$ Reg I$ D$ Reg I$ * 15 Reg D$ Reg I$ Reg D$ Reg Reg D$ Reg D$ Reg

16 Example Suppose 2 ns fo memoy access, 2 ns fo opeation, and 1 ns fo egiste file ead o wite Nonpipelined Execution: lw : IF + Read Reg + + Memoy + Wite Reg = = 8 ns add: IF + Read Reg + + Wite Reg = = 6 ns Pipelined Execution: Max(IF,Read Reg,,Memoy,Wite Reg) = 2 ns * 16

17 Pipeline Hazad: Matching socks in late load 12 2 AM 6 PM T a s k A B bubble Time O d e C D E F A depends on D; stall since folde tied up * 17

18 Poblems fo Computes Limits to pipelining: Hazads pevent next instuction fom executing duing its designated clock cycle Stuctual hazads: HW cannot suppot this combination of instuctions (single peson to fold and put clothes away) Contol hazads: Pipelining of banches & othe instuctions stall the pipeline until the hazad bubbles in the pipeline Data hazads: Instuction depends on esult of pio instuction still in the pipeline (missing sock) * 18

19 Stuctual Hazad #1: Single Memoy (1/2) I n s t. O d e Load Inst 1 Inst 2 Inst 3 Inst 4 Time (clock cycles) I$ Reg D$ Reg I$ Reg D$ Reg I$ Reg D$ Reg I$ Read same memoy twice in same clock cycle * 19 Reg D$ Reg I$ Reg D$ Reg

20 I n s t. Stuctual Hazad #2: Registes (1/2) Load Inst 1 Time (clock cycles) I$ Reg D$ Reg I$ Reg D$ Reg O d e Inst 2 Inst 3 Inst 4 I$ Reg D$ Reg I$ Reg D$ Reg I$ Reg D$ Reg Can t ead and wite to egistes simultaneously * 20

21 Stuctual Hazad #2: Registes (2/2) Fact: Registe access is VERY fast: takes less than half the time of stage Solution: intoduce convention always Wite to Registes duing fist half of each clock cycle always Read fom Registes duing second half of each clock cycle Result: can pefom Read and Wite duing same clock cycle * 21

22 Contol Hazad: Banching (1/6) Suppose we put banch decisionmaking hadwae in stage then two moe instuctions afte the banch will always be fetched, whethe o not the banch is taken Desied functionality of a banch if we do not take the banch, don t waste any time and continue executing nomally if we take the banch, don t execute any instuctions afte the banch, just go to the desied label * 22

23 Contol Hazad: Banching (2/6) Initial Solution: Stall until decision is made inset no-op instuctions: those that accomplish nothing, just take time Dawback: banches take 3 clock cycles each (assuming compaato is put in stage) * 23

24 Contol Hazad: Banching (3/6) Optimization #1: move compaato up to Stage 2 as soon as instuction is decoded (Opcode identifies is as a banch), immediately make a decision and set the value of the PC (if necessay) Benefit: since banch is complete in Stage 2, only one unnecessay instuction is fetched, so only one no-op is needed Side Note: This means that banches ae idle in Stages 3, 4 and 5. * 24

25 I n s t. O d e Contol Hazad: Banching (4/6) Inset a single no-op (bubble) Add Beq Load Time (clock cycles) I$ Reg D$ Reg I$ Reg D$ Reg bub ble I$ Reg D$ Reg Impact: 2 clock cycles pe banch instuction slow * 25

26 Contol Hazad: Banching (5/6) Optimization #2: Redefine banches Old definition: if we take the banch, none of the instuctions afte the banch get executed by accident New definition: whethe o not we take the banch, the single instuction immediately following the banch gets executed (called the banch-delay slot) * 26

27 Contol Hazad: Banching (6/6) Notes on Banch-Delay Slot Wost-Case Scenaio: can always put a no-op in the banch-delay slot Bette Case: can find an instuction peceding the banch which can be placed in the banch-delay slot without affecting flow of the pogam - e-odeing instuctions is a common method of speeding up pogams - compile must be vey smat in ode to find instuctions to do this - usually can find such an instuction at least 50% of the time * 27

28 Example: Nondelayed vs. Delayed Banch Nondelayed Banch o $8, $9,$10 Delayed Banch add $1,$2,$3 add $1,$2,$3 sub $4, $5,$6 beq $1, $4, Exit xo $10, $1,$11 sub $4, $5,$6 beq $1, $4, Exit o $8, $9,$10 xo $10, $1,$11 Exit: Exit: * 28

29 Things to Remembe (1/2) Optimal Pipeline Each stage is executing pat of an instuction each clock cycle. One instuction finishes duing each clock cycle. On aveage, execute fa moe quickly. What makes this wok? Similaities between instuctions allow us to use same stages fo all instuctions (geneally). Each stage takes about the same amount of time as all othes: little wasted time. * 29

30 Advanced Pipelining Concepts (if time) Out-of-ode Execution Supescala execution State-of-the-At Micopocesso * 30

31 Review Pipeline Hazad: Stall is dependency T a s k O d e 12 2 AM 6 PM A B C D E F bubble Time A depends on D; stall since folde tied up * 31

32 Out-of-Ode Laundy: Don t Wait T a s k O d e 12 2 AM 6 PM A B C D E F bubble Time A depends on D; est continue; need moe esouces to allow out-of-ode * 32

33 Supescala Laundy: Paallel pe stage T a s k O d e 12 2 AM 6 PM A B C D E F Time (light clothing) (dak clothing) (vey dity clothing) (light clothing) (dak clothing) (vey dity clothing) Moe esouces, HW to match mix of paallel tasks? * 33

34 Supescala Laundy: Mismatch Mix 12 2 AM 6 PM T a s k O d e A B C D Time (light clothing) (light clothing) (dak clothing) (light clothing) Task mix undeutilizes exta esouces * 34

35 Compaq Alpha Vey simila instuction set to MIPS 1 64KB Instuction cache, 1 64 KB Data cache on chip; 16MB L2 cache off chip Clock cycle = 1.5 nanoseconds, o 667 MHz clock ate Supescala: fetch up to 6 instuctions /clock cycle, eties up to 4 instuction/clock cycle Execution out-of-ode 15 million tansistos, 90 watts! * 35

36 Things to Remembe (1/2) Optimal Pipeline Each stage is executing pat of an instuction each clock cycle. One instuction finishes duing each clock cycle. On aveage, execute fa moe quickly. What makes this wok? Similaities between instuctions allow us to use same stages fo all instuctions (geneally). Each stage takes about the same amount of time as all othes: little wasted time. * 36

37 Things to Remembe (2/2) Pipelining a Big Idea: widely used concept What makes it less than pefect? Stuctual hazads: two diffeent instuctions equie same hadwae Need moe HW esouces Contol hazads: need to woy about banch instuctions? Delayed banch Data hazads: an instuction depends on a pevious instuction? * 37

UCB CS61C : Machine Structures

UCB CS61C : Machine Structures inst.eecs.bekeley.edu/~cs61c UCB CS61C : Machine Stuctues Lectue SOE Dan Gacia Lectue 28 CPU Design : Pipelining to Impove Pefomance 2010-04-05 Stanfod Reseaches have invented a monitoing technique called

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hadwae Oganization and Design Lectue 16: Pipelining Adapted fom Compute Oganization and Design, Patteson & Hennessy, UCB Last time: single cycle data path op System clock affects pimaily the Pogam

More information

Introduction To Pipelining. Chapter Pipelining1 1

Introduction To Pipelining. Chapter Pipelining1 1 Intoduction To Pipelining Chapte 6.1 - Pipelining1 1 Mooe s Law Mooe s Law says that the numbe of pocessos on a chip doubles about evey 18 months. Given the data on the following two slides, is this tue?

More information

Lecture #22 Pipelining II, Cache I

Lecture #22 Pipelining II, Cache I inst.eecs.bekeley.edu/~cs61c CS61C : Machine Stuctues Lectue #22 Pipelining II, Cache I Wiewold cicuits 2008-7-29 http://www.maa.og/editoial/mathgames/mathgames_05_24_04.html http://www.quinapalus.com/wi-index.html

More information

CMCS Mohamed Younis CMCS 611, Advanced Computer Architecture 1

CMCS Mohamed Younis CMCS 611, Advanced Computer Architecture 1 CMCS 611-101 Advanced Compute Achitectue Lectue 6 Intoduction to Pipelining Septembe 23, 2009 www.csee.umbc.edu/~younis/cmsc611/cmsc611.htm Mohamed Younis CMCS 611, Advanced Compute Achitectue 1 Pevious

More information

CS 61C: Great Ideas in Computer Architecture. Pipelining Hazards. Instructor: Senior Lecturer SOE Dan Garcia

CS 61C: Great Ideas in Computer Architecture. Pipelining Hazards. Instructor: Senior Lecturer SOE Dan Garcia CS 61C: Geat Ideas in Compute Achitectue Pipelining Hazads Instucto: Senio Lectue SOE Dan Gacia 1 Geat Idea #4: Paallelism So9wae Paallel Requests Assigned to compute e.g. seach Gacia Paallel Theads Assigned

More information

COSC 6385 Computer Architecture. - Pipelining

COSC 6385 Computer Architecture. - Pipelining COSC 6385 Compute Achitectue - Pipelining Sping 2012 Some of the slides ae based on a lectue by David Culle, Pipelining Pipelining is an implementation technique wheeby multiple instuctions ae ovelapped

More information

Computer Science 141 Computing Hardware

Computer Science 141 Computing Hardware Compute Science 141 Computing Hadwae Fall 2006 Havad Univesity Instucto: Pof. David Books dbooks@eecs.havad.edu [MIPS Pipeline Slides adapted fom Dave Patteson s UCB CS152 slides and May Jane Iwin s CSE331/431

More information

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards CISC 662 Gaduate Compute Achitectue Lectue 6 - Hazads Michela Taufe http://www.cis.udel.edu/~taufe/teaching/cis662f07 Powepoint Lectue Notes fom John Hennessy and David Patteson s: Compute Achitectue,

More information

The Processor: Improving Performance Data Hazards

The Processor: Improving Performance Data Hazards The Pocesso: Impoving Pefomance Data Hazads Monday 12 Octobe 15 Many slides adapted fom: and Design, Patteson & Hennessy 5th Edition, 2014, MK and fom Pof. May Jane Iwin, PSU Summay Pevious Class Pipeline

More information

Computer Architecture. Pipelining and Instruction Level Parallelism An Introduction. Outline of This Lecture

Computer Architecture. Pipelining and Instruction Level Parallelism An Introduction. Outline of This Lecture Compute Achitectue Pipelining and nstuction Level Paallelism An ntoduction Adapted fom COD2e by Hennessy & Patteson Slide 1 Outline of This Lectue ntoduction to the Concept of Pipelined Pocesso Pipelined

More information

Lecture Topics ECE 341. Lecture # 12. Control Signals. Control Signals for Datapath. Basic Processing Unit. Pipelining

Lecture Topics ECE 341. Lecture # 12. Control Signals. Control Signals for Datapath. Basic Processing Unit. Pipelining EE 341 Lectue # 12 Instucto: Zeshan hishti zeshan@ece.pdx.edu Novembe 10, 2014 Potland State Univesity asic Pocessing Unit ontol Signals Hadwied ontol Datapath contol signals Dealing with memoy delay Pipelining

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Instruc>on Level Parallelism

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Instruc>on Level Parallelism Agenda CS 61C: Geat Ideas in Compute Achitectue (Machine Stuctues) Instuc>on Level Paallelism Instuctos: Randy H. Katz David A. PaJeson hjp://inst.eecs.bekeley.edu/~cs61c/fa10 Review Instuc>on Set Design

More information

User Visible Registers. CPU Structure and Function Ch 11. General CPU Organization (4) Control and Status Registers (5) Register Organisation (4)

User Visible Registers. CPU Structure and Function Ch 11. General CPU Organization (4) Control and Status Registers (5) Register Organisation (4) PU Stuctue and Function h Geneal Oganisation Registes Instuction ycle Pipelining anch Pediction Inteupts Use Visible Registes Vaies fom one achitectue to anothe Geneal pupose egiste (GPR) ata, addess,

More information

COEN-4730 Computer Architecture Lecture 2 Review of Instruction Sets and Pipelines

COEN-4730 Computer Architecture Lecture 2 Review of Instruction Sets and Pipelines 1 COEN-4730 Compute Achitectue Lectue 2 Review of nstuction Sets and Pipelines Cistinel Ababei Dept. of Electical and Compute Engineeing Maquette Univesity Cedits: Slides adapted fom pesentations of Sudeep

More information

Administrivia. CMSC 411 Computer Systems Architecture Lecture 5. Data Hazard Even with Forwarding Figure A.9, Page A-20

Administrivia. CMSC 411 Computer Systems Architecture Lecture 5. Data Hazard Even with Forwarding Figure A.9, Page A-20 Administivia CMSC 411 Compute Systems Achitectue Lectue 5 Basic Pipelining (cont.) Alan Sussman als@cs.umd.edu as@csu dedu Homewok poblems fo Unit 1 due today Homewok poblems fo Unit 3 posted soon CMSC

More information

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin. School of Information Science and Technology SIST

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin.   School of Information Science and Technology SIST CS 110 Computer Architecture Pipelining Guest Lecture: Shu Yin http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University Slides based on UC Berkley's CS61C

More information

Chapter 4 (Part III) The Processor: Datapath and Control (Pipeline Hazards)

Chapter 4 (Part III) The Processor: Datapath and Control (Pipeline Hazards) Chapte 4 (Pat III) The Pocesso: Datapath and Contol (Pipeline Hazads) 陳瑞奇 (J.C. Chen) 亞洲大學資訊工程學系 Adapted fom class notes by Pof. M.J. Iwin, PSU and Pof. D. Patteson, UCB 1 吃感冒藥副作用怎麼辦? http://big5.sznews.com/health/images/attachement/jpg/site3/20120319/001558d90b3310d0c1683e.jpg

More information

You Are Here! Review: Hazards. Agenda. Agenda. Review: Load / Branch Delay Slots 7/28/2011

You Are Here! Review: Hazards. Agenda. Agenda. Review: Load / Branch Delay Slots 7/28/2011 CS 61C: Geat Ideas in Compute Achitectue (Machine Stuctues) Instuction Level Paallelism: Multiple Instuction Issue Guest Lectue: Justin Hsia Softwae Paallel Requests Assigned to compute e.g., Seach Katz

More information

CS 2461: Computer Architecture 1 Program performance and High Performance Processors

CS 2461: Computer Architecture 1 Program performance and High Performance Processors Couse Objectives: Whee ae we. CS 2461: Pogam pefomance and High Pefomance Pocessos Instucto: Pof. Bhagi Naahai Bits&bytes: Logic devices HW building blocks Pocesso: ISA, datapath Using building blocks

More information

CENG 3420 Computer Organization and Design. Lecture 07: MIPS Processor - II. Bei Yu

CENG 3420 Computer Organization and Design. Lecture 07: MIPS Processor - II. Bei Yu CENG 3420 Compute Oganization and Design Lectue 07: MIPS Pocesso - II Bei Yu CEG3420 L07.1 Sping 2016 Review: Instuction Citical Paths q Calculate cycle time assuming negligible delays (fo muxes, contol

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #22 CPU Design: Pipelining to Improve Performance II 2007-8-1 Scott Beamer, Instructor CS61C L22 CPU Design : Pipelining to Improve Performance

More information

CS 61C: Great Ideas in Computer Architecture Instruc(on Level Parallelism: Mul(ple Instruc(on Issue

CS 61C: Great Ideas in Computer Architecture Instruc(on Level Parallelism: Mul(ple Instruc(on Issue CS 61C: Geat Ideas in Compute Achitectue Instuc(on Level Paallelism: Mul(ple Instuc(on Issue Instuctos: Kste Asanovic, Randy H. Katz hbp://inst.eecs.bekeley.edu/~cs61c/fa12 1 Paallel Requests Assigned

More information

CENG 3420 Lecture 07: Pipeline

CENG 3420 Lecture 07: Pipeline CENG 3420 Lectue 07: Pipeline Bei Yu byu@cse.cuhk.edu.hk CENG3420 L07.1 Sping 2017 Outline q Review: Flip-Flop Contol Signals q Pipeline Motivations q Pipeline Hazads q Exceptions CENG3420 L07.2 Sping

More information

Computer Architecture. Lecture 6.1: Fundamentals of

Computer Architecture. Lecture 6.1: Fundamentals of CS3350B Computer Architecture Winter 2015 Lecture 6.1: Fundamentals of Instructional Level Parallelism Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and

More information

CSE4201. Computer Architecture

CSE4201. Computer Architecture CSE 4201 Compute Achitectue Pof. Mokhta Aboelaze Pats of these slides ae taken fom Notes by Pof. David Patteson at UCB Outline MIPS and instuction set Simple pipeline in MIPS Stuctual and data hazads Fowading

More information

Pipeline: Introduction

Pipeline: Introduction Pipeline: Introduction These slides are derived from: CSCE430/830 Computer Architecture course by Prof. Hong Jiang and Dave Patterson UCB Some figures and tables have been derived from : Computer System

More information

CPS104 Computer Organization and Programming Lecture 19: Pipelining. Robert Wagner

CPS104 Computer Organization and Programming Lecture 19: Pipelining. Robert Wagner CPS104 Computer Organization and Programming Lecture 19: Pipelining Robert Wagner cps 104 Pipelining..1 RW Fall 2000 Lecture Overview A Pipelined Processor : Introduction to the concept of pipelined processor.

More information

Review from last lecture

Review from last lecture CSE820 Gaduate Compute Achitectue Week 3 Pefomance + Pipeline Review Based on slides by David Patteson Review fom last lectue Tacking and extapolating technology pat of achitect s esponsibility Expect

More information

CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards

CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Pipelined Execution Representation Time

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 4 Processor Part 2: Pipelining (Ch.4) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations from Mike

More information

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14 MIPS Pipelining Computer Organization Architectures for Embedded Computing Wednesday 8 October 14 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition, 2011, MK

More information

CS 61C: Great Ideas in Computer Architecture Control and Pipelining

CS 61C: Great Ideas in Computer Architecture Control and Pipelining CS 6C: Great Ideas in Computer Architecture Control and Pipelining Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs6c/sp6 Datapath Control Signals ExtOp: zero, sign

More information

Lecture 6: Pipelining

Lecture 6: Pipelining Lecture 6: Pipelining i CSCE 26 Computer Organization Instructor: Saraju P. ohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #19: Pipelining II 2005-07-21 Andy Carle CS 61C L19 Pipelining II (1) Review: Datapath for MIPS PC instruction memory rd rs rt registers

More information

Modern Computer Architecture

Modern Computer Architecture Modern Computer Architecture Lecture2 Pipelining: Basic and Intermediate Concepts Hongbin Sun 国家集成电路人才培养基地 Xi an Jiaotong University Pipelining: Its Natural! Laundry Example Ann, Brian, Cathy, Dave each

More information

Lecture 3. Pipelining. Dr. Soner Onder CS 4431 Michigan Technological University 9/23/2009 1

Lecture 3. Pipelining. Dr. Soner Onder CS 4431 Michigan Technological University 9/23/2009 1 Lecture 3 Pipelining Dr. Soner Onder CS 4431 Michigan Technological University 9/23/2009 1 A "Typical" RISC ISA 32-bit fixed format instruction (3 formats) 32 32-bit GPR (R0 contains zero, DP take pair)

More information

Any modern computer system will incorporate (at least) two levels of storage:

Any modern computer system will incorporate (at least) two levels of storage: 1 Any moden compute system will incopoate (at least) two levels of stoage: pimay stoage: andom access memoy (RAM) typical capacity 32MB to 1GB cost pe MB $3. typical access time 5ns to 6ns bust tansfe

More information

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle?

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle? CSE 2021: Computer Organization Single Cycle (Review) Lecture-10b CPU Design : Pipelining-1 Overview, Datapath and control Shakil M. Khan 2 Single Cycle with Jump Multi-Cycle Implementation Instruction:

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

Pipelining. Maurizio Palesi

Pipelining. Maurizio Palesi * Pipelining * Adapted from David A. Patterson s CS252 lecture slides, http://www.cs.berkeley/~pattrsn/252s98/index.html Copyright 1998 UCB 1 References John L. Hennessy and David A. Patterson, Computer

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

Page 1. Pipelining: Its Natural! Chapter 3. Pipelining. Pipelined Laundry Start work ASAP. Sequential Laundry A B C D. 6 PM Midnight

Page 1. Pipelining: Its Natural! Chapter 3. Pipelining. Pipelined Laundry Start work ASAP. Sequential Laundry A B C D. 6 PM Midnight Pipelining: Its Natural! Chapter 3 Pipelining Laundry Example Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes 30 minutes A B C D Dryer takes 40 minutes Folder

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Science 6 PM 7 8 9 10 11 Midnight Time 30 40 20 30 40 20

More information

Working on the Pipeline

Working on the Pipeline Computer Science 6C Spring 27 Working on the Pipeline Datapath Control Signals Computer Science 6C Spring 27 MemWr: write memory MemtoReg: ALU; Mem RegDst: rt ; rd RegWr: write register 4 PC Ext Imm6 Adder

More information

Computer Systems Architecture Spring 2016

Computer Systems Architecture Spring 2016 Computer Systems Architecture Spring 2016 Lecture 01: Introduction Shuai Wang Department of Computer Science and Technology Nanjing University [Adapted from Computer Architecture: A Quantitative Approach,

More information

CPE Computer Architecture. Appendix A: Pipelining: Basic and Intermediate Concepts

CPE Computer Architecture. Appendix A: Pipelining: Basic and Intermediate Concepts CPE 110408443 Computer Architecture Appendix A: Pipelining: Basic and Intermediate Concepts Sa ed R. Abed [Computer Engineering Department, Hashemite University] Outline Basic concept of Pipelining The

More information

Review: Moore s Law. EECS 252 Graduate Computer Architecture Lecture 2. Review: Joy s Law in ManyCore world. Bell s Law new class per decade

Review: Moore s Law. EECS 252 Graduate Computer Architecture Lecture 2. Review: Joy s Law in ManyCore world. Bell s Law new class per decade EECS 252 Gaduate Compute Achitectue Lectue 2 ℵ 0 Review of Instuction Sets, Pipelines, and Caches Januay 26 th, 2009 Review Mooe s Law John Kubiatowicz Electical Engineeing and Compute Sciences Univesity

More information

ECE 154A Introduction to. Fall 2012

ECE 154A Introduction to. Fall 2012 ECE 154A Introduction to Computer Architecture Fall 2012 Dmitri Strukov Lecture 10 Floating point review Pipelined design IEEE Floating Point Format single: 8 bits double: 11 bits single: 23 bits double:

More information

Pre-requisites. This is a textbook-based course. Chapter 1. Pipelines, Performance, Caches, and Virtual Memory. January 2009 Paul H J Kelly

Pre-requisites. This is a textbook-based course. Chapter 1. Pipelines, Performance, Caches, and Virtual Memory. January 2009 Paul H J Kelly 332 Advanced Compute Achitectue Chapte 1 Intoduction and eview of Pipelines, Pefomance, Caches, and Vitual Januay 2009 Paul H J Kelly These lectue notes ae patly based on the couse text, Hennessy and Patteson

More information

A Novel Parallel Deadlock Detection Algorithm and Architecture

A Novel Parallel Deadlock Detection Algorithm and Architecture A Novel Paallel Deadlock Detection Aloithm and Achitectue Pun H. Shiu 2, Yudon Tan 2, Vincent J. Mooney III {ship, ydtan, mooney}@ece.atech.ed }@ece.atech.edu http://codesin codesin.ece.atech.eduedu,2

More information

ELCT 501: Digital System Design

ELCT 501: Digital System Design ELCT 501: Digital System Lecture 8: Pipelining Dr. Mohamed Abd El Ghany, Pipelining: Its Natural! Laundry Example Ann, brian, cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes

More information

Multidimensional Testing

Multidimensional Testing Multidimensional Testing QA appoach fo Stoage netwoking Yohay Lasi Visuality Systems 1 Intoduction Who I am Yohay Lasi, QA Manage at Visuality Systems Visuality Systems the leading commecial povide of

More information

Accelerating Storage with RDMA Max Gurtovoy Mellanox Technologies

Accelerating Storage with RDMA Max Gurtovoy Mellanox Technologies Acceleating Stoage with RDMA Max Gutovoy Mellanox Technologies 2018 Stoage Develope Confeence EMEA. Mellanox Technologies. All Rights Reseved. 1 What is RDMA? Remote Diect Memoy Access - povides the ability

More information

Computer Architecture

Computer Architecture Lecture 3: Pipelining Iakovos Mavroidis Computer Science Department University of Crete 1 Previous Lecture Measurements and metrics : Performance, Cost, Dependability, Power Guidelines and principles in

More information

Chapter 8. Pipelining

Chapter 8. Pipelining Chapter 8. Pipelining Overview Pipelining is widely used in modern processors. Pipelining improves system performance in terms of throughput. Pipelined organization requires sophisticated compilation techniques.

More information

Pipelining, Instruction Level Parallelism and Memory in Processors. Advanced Topics ICOM 4215 Computer Architecture and Organization Fall 2010

Pipelining, Instruction Level Parallelism and Memory in Processors. Advanced Topics ICOM 4215 Computer Architecture and Organization Fall 2010 Pipelining, Instruction Level Parallelism and Memory in Processors Advanced Topics ICOM 4215 Computer Architecture and Organization Fall 2010 NOTE: The material for this lecture was taken from several

More information

THE THETA BLOCKCHAIN

THE THETA BLOCKCHAIN THE THETA BLOCKCHAIN Theta is a decentalized video steaming netwok, poweed by a new blockchain and token. By Theta Labs, Inc. Last Updated: Nov 21, 2017 esion 1.0 1 OUTLINE Motivation Reputation Dependent

More information

Overview of Control. CS 152 Computer Architecture and Engineering Lecture 11. Multicycle Controller Design

Overview of Control. CS 152 Computer Architecture and Engineering Lecture 11. Multicycle Controller Design S 152 ompute chitectue and Engineeing Lectue 11 Multicycle ontolle Design Oveview of ontol ontol may be designed using one of seveal initial epesentations. The choice of sequence contol, and how logic

More information

Pipelining: Overview. CPSC 252 Computer Organization Ellen Walker, Hiram College

Pipelining: Overview. CPSC 252 Computer Organization Ellen Walker, Hiram College Pipelining: Overview CPSC 252 Computer Organization Ellen Walker, Hiram College Pipelining the Wash Divide into 4 steps: Wash, Dry, Fold, Put Away Perform the steps in parallel Wash 1 Wash 2, Dry 1 Wash

More information

Chapter 5 (a) Overview

Chapter 5 (a) Overview Chapter 5 (a) Overview (a) The principles of pipelining (a) A pipelined design of SRC (b) Pipeline hazards (b) Instruction-level parallelism (ILP) Superscalar processors Very Long Instruction Word (VLIW)

More information

Chapter 4 The Processor 1. Chapter 4A. The Processor

Chapter 4 The Processor 1. Chapter 4A. The Processor Chapter 4 The Processor 1 Chapter 4A The Processor Chapter 4 The Processor 2 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Pipelining James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy What is Pipelining? Pipelining

More information

Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining

Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining Single-Cycle Design Problems Assuming fixed-period clock every instruction datapath uses one

More information

ELE 655 Microprocessor System Design

ELE 655 Microprocessor System Design ELE 655 Microprocessor System Design Section 2 Instruction Level Parallelism Class 1 Basic Pipeline Notes: Reg shows up two places but actually is the same register file Writes occur on the second half

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

Lecture 7 Pipelining. Peng Liu.

Lecture 7 Pipelining. Peng Liu. Lecture 7 Pipelining Peng Liu liupeng@zju.edu.cn 1 Review: The Single Cycle Processor 2 Review: Given Datapath,RTL -> Control Instruction Inst Memory Adr Op Fun Rt

More information

dc - Linux Command Dc may be invoked with the following command-line options: -V --version Print out the version of dc

dc - Linux Command Dc may be invoked with the following command-line options: -V --version Print out the version of dc - CentOS 5.2 - Linux Uses Guide - Linux Command SYNOPSIS [-V] [--vesion] [-h] [--help] [-e sciptexpession] [--expession=sciptexpession] [-f sciptfile] [--file=sciptfile] [file...] DESCRIPTION is a evese-polish

More information

Pipeline Overview. Dr. Jiang Li. Adapted from the slides provided by the authors. Jiang Li, Ph.D. Department of Computer Science

Pipeline Overview. Dr. Jiang Li. Adapted from the slides provided by the authors. Jiang Li, Ph.D. Department of Computer Science Pipeline Overview Dr. Jiang Li Adapted from the slides provided by the authors Outline MIPS An ISA for Pipelining 5 stage pipelining Structural and Data Hazards Forwarding Branch Schemes Exceptions and

More information

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI CSCI 42: Computer Architectures The Processor (2) Fengguang Song Department of Computer & Information Science IUPUI Full Datapath Branch Target Instruction Fetch Immediate 4 Today s Contents We have looked

More information

Pipeline Processors David Rye :: MTRX3700 Pipelining :: Slide 1 of 15

Pipeline Processors David Rye :: MTRX3700 Pipelining :: Slide 1 of 15 Pipeline Processors Pipelining :: Slide 1 of 15 Pipeline Processors A common feature of modern processors Works like a series production line An operation is divided into k decoupled (independent) elementary

More information

Modeling a shared medium access node with QoS distinction

Modeling a shared medium access node with QoS distinction Modeling a shaed medium access node with QoS distinction Matthias Gies, Jonas Geutet Compute Engineeing and Netwoks Laboatoy (TIK) Swiss Fedeal Institute of Technology Züich CH-8092 Züich, Switzeland email:

More information

EI338: Computer Systems and Engineering (Computer Architecture & Operating Systems)

EI338: Computer Systems and Engineering (Computer Architecture & Operating Systems) EI338: Computer Systems and Engineering (Computer Architecture & Operating Systems) Chentao Wu 吴晨涛 Associate Professor Dept. of Computer Science and Engineering Shanghai Jiao Tong University SEIEE Building

More information

COSC 6385 Computer Architecture - Pipelining

COSC 6385 Computer Architecture - Pipelining COSC 6385 Computer Architecture - Pipelining Fall 2006 Some of the slides are based on a lecture by David Culler, Instruction Set Architecture Relevant features for distinguishing ISA s Internal storage

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition The Processor - Introduction

More information

Pipelining. CSC Friday, November 6, 2015

Pipelining. CSC Friday, November 6, 2015 Pipelining CSC 211.01 Friday, November 6, 2015 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory register file ALU data memory register file Not

More information

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor.

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor. COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor - Introduction

More information

Lecture 15: Pipelining. Spring 2018 Jason Tang

Lecture 15: Pipelining. Spring 2018 Jason Tang Lecture 15: Pipelining Spring 2018 Jason Tang 1 Topics Overview of pipelining Pipeline performance Pipeline hazards 2 Sequential Laundry 6 PM 7 8 9 10 11 Midnight Time T a s k O r d e r A B C D 30 40 20

More information

Module 4c: Pipelining

Module 4c: Pipelining Module 4c: Pipelining R E F E R E N C E S : S T A L L I N G S, C O M P U T E R O R G A N I Z A T I O N A N D A R C H I T E C T U R E M O R R I S M A N O, C O M P U T E R O R G A N I Z A T I O N A N D A

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

A Memory Efficient Array Architecture for Real-Time Motion Estimation

A Memory Efficient Array Architecture for Real-Time Motion Estimation A Memoy Efficient Aay Achitectue fo Real-Time Motion Estimation Vasily G. Moshnyaga and Keikichi Tamau Depatment of Electonics & Communication, Kyoto Univesity Sakyo-ku, Yoshida-Honmachi, Kyoto 66-1, JAPAN

More information

ANALYTIC PERFORMANCE MODELS FOR SINGLE CLASS AND MULTIPLE CLASS MULTITHREADED SOFTWARE SERVERS

ANALYTIC PERFORMANCE MODELS FOR SINGLE CLASS AND MULTIPLE CLASS MULTITHREADED SOFTWARE SERVERS ANALYTIC PERFORMANCE MODELS FOR SINGLE CLASS AND MULTIPLE CLASS MULTITHREADED SOFTWARE SERVERS Daniel A Menascé Mohamed N Bennani Dept of Compute Science Oacle, Inc Geoge Mason Univesity 1211 SW Fifth

More information

EE 6900: Interconnection Networks for HPC Systems Fall 2016

EE 6900: Interconnection Networks for HPC Systems Fall 2016 EE 6900: Inteconnection Netwoks fo HPC Systems Fall 2016 Avinash Kaanth Kodi School of Electical Engineeing and Compute Science Ohio Univesity Athens, OH 45701 Email: kodi@ohio.edu 1 Acknowledgement: Inteconnection

More information

CSCI 402: Computer Architectures. Fengguang Song Department of Computer & Information Science IUPUI. Today s Content

CSCI 402: Computer Architectures. Fengguang Song Department of Computer & Information Science IUPUI. Today s Content 3/6/8 CSCI 42: Computer Architectures The Processor (2) Fengguang Song Department of Computer & Information Science IUPUI Today s Content We have looked at how to design a Data Path. 4.4, 4.5 We will design

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19 CO2-3224 Computer Architecture and Programming Languages CAPL Lecture 8 & 9 Dr. Kinga Lipskoch Fall 27 Single Cycle Disadvantages & Advantages Uses the clock cycle inefficiently the clock cycle must be

More information

Overview. Appendix A. Pipelining: Its Natural! Sequential Laundry 6 PM Midnight. Pipelined Laundry: Start work ASAP

Overview. Appendix A. Pipelining: Its Natural! Sequential Laundry 6 PM Midnight. Pipelined Laundry: Start work ASAP Overview Appendix A Pipelining: Basic and Intermediate Concepts Basics of Pipelining Pipeline Hazards Pipeline Implementation Pipelining + Exceptions Pipeline to handle Multicycle Operations 1 2 Unpipelined

More information

Design a MIPS Processor (2/2)

Design a MIPS Processor (2/2) 93-2Digital System Design Design a MIPS Processor (2/2) Lecturer: Chihhao Chao Advisor: Prof. An-Yeu Wu 2005/5/13 Friday ACCESS IC LABORTORY Outline v 6.1 An Overview of Pipelining v 6.2 A Pipelined Datapath

More information

Processor Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Processor Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Processor Architecture Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Moore s Law Gordon Moore @ Intel (1965) 2 Computer Architecture Trends (1)

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 32: Pipeline Parallelism 3

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 32: Pipeline Parallelism 3 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 32: Pipeline Parallelism 3 Instructor: Dan Garcia inst.eecs.berkeley.edu/~cs61c! Compu@ng in the News At a laboratory in São Paulo,

More information

Chapter 4 (Part II) Sequential Laundry

Chapter 4 (Part II) Sequential Laundry Chapter 4 (Part II) The Processor Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu Sequential Laundry 6 P 7 8 9 10 11 12 1 2 A T a s k O r d e r A B C D 30 30 30 30 30 30 30 30 30 30

More information

CSE 141 Computer Architecture Spring Lectures 11 Exceptions and Introduction to Pipelining. Announcements

CSE 141 Computer Architecture Spring Lectures 11 Exceptions and Introduction to Pipelining. Announcements CSE 4 Computer Architecture Spring 25 Lectures Exceptions and Introduction to Pipelining May 4, 25 Announcements Reading Assignment Sections 5.6, 5.9 The Processor Datapath and Control Section 6., Enhancing

More information

Conversion Functions for Symmetric Key Ciphers

Conversion Functions for Symmetric Key Ciphers Jounal of Infomation Assuance and Secuity 2 (2006) 41 50 Convesion Functions fo Symmetic Key Ciphes Deba L. Cook and Angelos D. Keomytis Depatment of Compute Science Columbia Univesity, mail code 0401

More information

Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts

Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts CS359: Computer Architecture Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts Yanyan Shen Department of Computer Science and Engineering Shanghai Jiao Tong University Parallel

More information

MapReduce Optimizations and Algorithms 2015 Professor Sasu Tarkoma

MapReduce Optimizations and Algorithms 2015 Professor Sasu Tarkoma apreduce Optimizations and Algoithms 2015 Pofesso Sasu Takoma www.cs.helsinki.fi Optimizations Reduce tasks cannot stat befoe the whole map phase is complete Thus single slow machine can slow down the

More information

Appendix A. Overview

Appendix A. Overview Appendix A Pipelining: Basic and Intermediate Concepts 1 Overview Basics of Pipelining Pipeline Hazards Pipeline Implementation Pipelining + Exceptions Pipeline to handle Multicycle Operations 2 1 Unpipelined

More information

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Introduction Chapter 4.1 Chapter 4.2 Review: MIPS (RISC) Design Principles Simplicity favors regularity fixed size instructions small number

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards CISC 662 Graduate Computer Architecture Lecture 6 - Hazards Michela Taufer http://www.cis.udel.edu/~taufer/teaching/cis662f07 Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer

More information

Processor Architecture

Processor Architecture Processor Architecture Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE2030: Introduction to Computer Systems, Spring 2018, Jinkyu Jeong (jinkyu@skku.edu)

More information