The Processor: Improving Performance Data Hazards

Size: px
Start display at page:

Download "The Processor: Improving Performance Data Hazards"

Transcription

1 The Pocesso: Impoving Pefomance Data Hazads Monday 12 Octobe 15 Many slides adapted fom: and Design, Patteson & Hennessy 5th Edition, 2014, MK and fom Pof. May Jane Iwin, PSU

2 Summay Pevious Class Pipeline Today: Reducing pipeline data hazads Fowading Stalls 2

3 Can Pipelining Get Us Into Touble? Pipeline Hazads - Situations that pevent stating the next instuction in the next cycle stuctual hazads: attempt to use the same esouce by two diffeent instuctions at the same time data hazads: Deciding on contol action depends on pevious instuction An instuction s souce opeand(s) ae poduced by a pio instuction still in the pipeline contol hazads: attempt to make a decision about pogam contol flow befoe the condition has been evaluated by a pevious instuction banch and jump instuctions, exceptions Can usually esolve hazads by waiting (stall) pipeline contol must detect the hazad and take action to esolve hazads 3

4 Review: Registe Usage Can Cause Data Hazads Read befoe wite data hazad Value of $ / add $1, sub $4,$1,$5 and $6,$1,$7 o $8,$1,$9 xo $4,$1,$5 4

5 One Way to Fix a Data Hazad - Stall I n s t. add $1, stall Can fix data hazad by waiting stall but impacts CPI O d e stall sub $4,$1,$5 and $6,$1,$7 5

6 Anothe Way to Fix a Data Hazad - Fowading One Way to Fix a Data Hazad - Stall I n s t. add $1, sub $4,$1,$5 Fix data hazads by fowading esults as soon as they ae available to whee they ae needed O d e and $6,$1,$7 o $8,$1,$9 xo $4,$1,$5 6

7 Data Fowading (aka Bypassing) Take the esult fom the ealiest point that it exists in any of the pipeline state egistes and fowad it to the functional units (e.g., the ) that need it that cycle Fo functional unit: the inputs can come fom any pipeline egiste athe than just fom ID/EX by adding multiplexos to the inputs of the connecting the Rd wite data in EX/MEM o MEM/WB to eithe (o both) of the EX s stage Rs and Rt mux inputs adding the pope contol hadwae to contol the new muxes Othe functional units may need simila fowading logic (e.g., the DM) With fowading can achieve a CPI of 1 even in the pesence of data dependencies 7

8 Fowading Paths 8

9 Fowading Illustation I n s t. add $1, sub $4,$1,$5 O d e and $6,$7,$1 EX fowading MEM fowading 9

10 Fowading - Anothe Complication! Anothe potential data hazad can occu when thee is a conflict between the esult of the WB stage instuction and the MEM stage instuction which should be fowaded? I n s t. O d e add $1,$1,$2 add $1,$1,$3 add $1,$1,$4 10

11 Datapath with Fowading and Contol 11

12 Memoy-to-Memoy Copies Fo loads immediately followed by stoes (memoy-tomemoy copies) can avoid a stall by adding fowading hadwae fom the MEM/WB egiste to the data memoy input. Would need to add a Fowad Unit and a mux to the MEM stage I n s t. O d e lw $1,4($2) sw $1,4($3) 12

13 Fowading with Load-use Data Hazads I n s t. O d e lw $1,4($2) stall sub $4,$1,$5 sub and $4,$1,$5 $6,$1,$7 and o $6,$1,$7 $8,$1,$9 xo $8,$1,$9 $4,$1,$5 xo $4,$1,$5 IM Reg DM 13

14 Code Scheduling to Avoid Stalls Reode code to avoid use of load esult in the next instuction C code fo A = B + E; C = B + F; stall stall lw $t1, 0($t0) lw $t2, 4($t0) add $t3, $t1, $t2 sw $t3, 12($t0) lw $t4, 8($t0) add $t5, $t1, $t4 sw $t5, 16($t0) 13 cycles lw $t1, 0($t0) lw $t2, 4($t0) lw $t4, 8($t0) add $t3, $t1, $t2 sw $t3, 12($t0) add $t5, $t1, $t4 sw $t5, 16($t0) 11 cycles 14

15 How to Stall the Pipeline Foce contol values in ID/EX egiste to 0 EX, MEM and WB do nop (no-opeation) Pevent update of PC and IF/ID egiste Using instuction is decoded again Following instuction is fetched again 1-cycle stall allows MEM to ead data fo lw Can subsequently fowad to EX stage 15

16 Stall/Bubble in the Pipeline Stall inseted hee 16

17 Stall/Bubble in the Pipeline O, moe accuately 17

18 Datapath with Hazad Detection 18

19 Stalls and Pefomance The BIG Pictue Stalls educe pefomance But ae equied to get coect esults Compile can aange code to avoid hazads and stalls Requies knowledge of the pipeline stuctue 19

20 Conclusion All moden day pocessos use pipelining fo pefomance a CPI of 1 and faste CC Pipeline clock ate limited by slowest pipeline stage designing a balanced pipeline is impotant Must detect and esolve hazads Stuctual hazads esolved by designing the pipeline coectly Data hazads Stall (impacts CPI) Fowad (equies hadwae suppot) 20

21 Next Class Reducing pipeline contol hazads Exceptions and Inteupts 21

22 The Pocesso: Impoving Pefomance Data Hazads Monday 12 Octobe 15 Many slides adapted fom: and Design, Patteson & Hennessy 5th Edition, 2014, MK and fom Pof. May Jane Iwin, PSU

Computer Science 141 Computing Hardware

Computer Science 141 Computing Hardware Compute Science 141 Computing Hadwae Fall 2006 Havad Univesity Instucto: Pof. David Books dbooks@eecs.havad.edu [MIPS Pipeline Slides adapted fom Dave Patteson s UCB CS152 slides and May Jane Iwin s CSE331/431

More information

Chapter 4 (Part III) The Processor: Datapath and Control (Pipeline Hazards)

Chapter 4 (Part III) The Processor: Datapath and Control (Pipeline Hazards) Chapte 4 (Pat III) The Pocesso: Datapath and Contol (Pipeline Hazads) 陳瑞奇 (J.C. Chen) 亞洲大學資訊工程學系 Adapted fom class notes by Pof. M.J. Iwin, PSU and Pof. D. Patteson, UCB 1 吃感冒藥副作用怎麼辦? http://big5.sznews.com/health/images/attachement/jpg/site3/20120319/001558d90b3310d0c1683e.jpg

More information

COSC 6385 Computer Architecture. - Pipelining

COSC 6385 Computer Architecture. - Pipelining COSC 6385 Compute Achitectue - Pipelining Sping 2012 Some of the slides ae based on a lectue by David Culle, Pipelining Pipelining is an implementation technique wheeby multiple instuctions ae ovelapped

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hadwae Oganization and Design Lectue 16: Pipelining Adapted fom Compute Oganization and Design, Patteson & Hennessy, UCB Last time: single cycle data path op System clock affects pimaily the Pogam

More information

Introduction To Pipelining. Chapter Pipelining1 1

Introduction To Pipelining. Chapter Pipelining1 1 Intoduction To Pipelining Chapte 6.1 - Pipelining1 1 Mooe s Law Mooe s Law says that the numbe of pocessos on a chip doubles about evey 18 months. Given the data on the following two slides, is this tue?

More information

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards CISC 662 Gaduate Compute Achitectue Lectue 6 - Hazads Michela Taufe http://www.cis.udel.edu/~taufe/teaching/cis662f07 Powepoint Lectue Notes fom John Hennessy and David Patteson s: Compute Achitectue,

More information

CENG 3420 Computer Organization and Design. Lecture 07: MIPS Processor - II. Bei Yu

CENG 3420 Computer Organization and Design. Lecture 07: MIPS Processor - II. Bei Yu CENG 3420 Compute Oganization and Design Lectue 07: MIPS Pocesso - II Bei Yu CEG3420 L07.1 Sping 2016 Review: Instuction Citical Paths q Calculate cycle time assuming negligible delays (fo muxes, contol

More information

Computer Architecture. Pipelining and Instruction Level Parallelism An Introduction. Outline of This Lecture

Computer Architecture. Pipelining and Instruction Level Parallelism An Introduction. Outline of This Lecture Compute Achitectue Pipelining and nstuction Level Paallelism An ntoduction Adapted fom COD2e by Hennessy & Patteson Slide 1 Outline of This Lectue ntoduction to the Concept of Pipelined Pocesso Pipelined

More information

COEN-4730 Computer Architecture Lecture 2 Review of Instruction Sets and Pipelines

COEN-4730 Computer Architecture Lecture 2 Review of Instruction Sets and Pipelines 1 COEN-4730 Compute Achitectue Lectue 2 Review of nstuction Sets and Pipelines Cistinel Ababei Dept. of Electical and Compute Engineeing Maquette Univesity Cedits: Slides adapted fom pesentations of Sudeep

More information

CENG 3420 Lecture 07: Pipeline

CENG 3420 Lecture 07: Pipeline CENG 3420 Lectue 07: Pipeline Bei Yu byu@cse.cuhk.edu.hk CENG3420 L07.1 Sping 2017 Outline q Review: Flip-Flop Contol Signals q Pipeline Motivations q Pipeline Hazads q Exceptions CENG3420 L07.2 Sping

More information

CS 61C: Great Ideas in Computer Architecture. Pipelining Hazards. Instructor: Senior Lecturer SOE Dan Garcia

CS 61C: Great Ideas in Computer Architecture. Pipelining Hazards. Instructor: Senior Lecturer SOE Dan Garcia CS 61C: Geat Ideas in Compute Achitectue Pipelining Hazads Instucto: Senio Lectue SOE Dan Gacia 1 Geat Idea #4: Paallelism So9wae Paallel Requests Assigned to compute e.g. seach Gacia Paallel Theads Assigned

More information

CMCS Mohamed Younis CMCS 611, Advanced Computer Architecture 1

CMCS Mohamed Younis CMCS 611, Advanced Computer Architecture 1 CMCS 611-101 Advanced Compute Achitectue Lectue 6 Intoduction to Pipelining Septembe 23, 2009 www.csee.umbc.edu/~younis/cmsc611/cmsc611.htm Mohamed Younis CMCS 611, Advanced Compute Achitectue 1 Pevious

More information

Administrivia. CMSC 411 Computer Systems Architecture Lecture 5. Data Hazard Even with Forwarding Figure A.9, Page A-20

Administrivia. CMSC 411 Computer Systems Architecture Lecture 5. Data Hazard Even with Forwarding Figure A.9, Page A-20 Administivia CMSC 411 Compute Systems Achitectue Lectue 5 Basic Pipelining (cont.) Alan Sussman als@cs.umd.edu as@csu dedu Homewok poblems fo Unit 1 due today Homewok poblems fo Unit 3 posted soon CMSC

More information

Lecture 8 Introduction to Pipelines Adapated from slides by David Patterson

Lecture 8 Introduction to Pipelines Adapated from slides by David Patterson Lectue 8 Intoduction to Pipelines Adapated fom slides by David Patteson http://www-inst.eecs.bekeley.edu/~cs61c/ * 1 Review (1/3) Datapath is the hadwae that pefoms opeations necessay to execute pogams.

More information

UCB CS61C : Machine Structures

UCB CS61C : Machine Structures inst.eecs.bekeley.edu/~cs61c UCB CS61C : Machine Stuctues Lectue SOE Dan Gacia Lectue 28 CPU Design : Pipelining to Impove Pefomance 2010-04-05 Stanfod Reseaches have invented a monitoing technique called

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Instruc>on Level Parallelism

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Instruc>on Level Parallelism Agenda CS 61C: Geat Ideas in Compute Achitectue (Machine Stuctues) Instuc>on Level Paallelism Instuctos: Randy H. Katz David A. PaJeson hjp://inst.eecs.bekeley.edu/~cs61c/fa10 Review Instuc>on Set Design

More information

CSE4201. Computer Architecture

CSE4201. Computer Architecture CSE 4201 Compute Achitectue Pof. Mokhta Aboelaze Pats of these slides ae taken fom Notes by Pof. David Patteson at UCB Outline MIPS and instuction set Simple pipeline in MIPS Stuctual and data hazads Fowading

More information

Review from last lecture

Review from last lecture CSE820 Gaduate Compute Achitectue Week 3 Pefomance + Pipeline Review Based on slides by David Patteson Review fom last lectue Tacking and extapolating technology pat of achitect s esponsibility Expect

More information

CS 2461: Computer Architecture 1 Program performance and High Performance Processors

CS 2461: Computer Architecture 1 Program performance and High Performance Processors Couse Objectives: Whee ae we. CS 2461: Pogam pefomance and High Pefomance Pocessos Instucto: Pof. Bhagi Naahai Bits&bytes: Logic devices HW building blocks Pocesso: ISA, datapath Using building blocks

More information

You Are Here! Review: Hazards. Agenda. Agenda. Review: Load / Branch Delay Slots 7/28/2011

You Are Here! Review: Hazards. Agenda. Agenda. Review: Load / Branch Delay Slots 7/28/2011 CS 61C: Geat Ideas in Compute Achitectue (Machine Stuctues) Instuction Level Paallelism: Multiple Instuction Issue Guest Lectue: Justin Hsia Softwae Paallel Requests Assigned to compute e.g., Seach Katz

More information

CS 61C: Great Ideas in Computer Architecture Instruc(on Level Parallelism: Mul(ple Instruc(on Issue

CS 61C: Great Ideas in Computer Architecture Instruc(on Level Parallelism: Mul(ple Instruc(on Issue CS 61C: Geat Ideas in Compute Achitectue Instuc(on Level Paallelism: Mul(ple Instuc(on Issue Instuctos: Kste Asanovic, Randy H. Katz hbp://inst.eecs.bekeley.edu/~cs61c/fa12 1 Paallel Requests Assigned

More information

ECS 154B Computer Architecture II Spring 2009

ECS 154B Computer Architecture II Spring 2009 ECS 154B Computer Architecture II Spring 2009 Pipelining Datapath and Control 6.2-6.3 Partially adapted from slides by Mary Jane Irwin, Penn State And Kurtis Kredo, UCD Pipelined CPU Break execution into

More information

Lecture Topics ECE 341. Lecture # 12. Control Signals. Control Signals for Datapath. Basic Processing Unit. Pipelining

Lecture Topics ECE 341. Lecture # 12. Control Signals. Control Signals for Datapath. Basic Processing Unit. Pipelining EE 341 Lectue # 12 Instucto: Zeshan hishti zeshan@ece.pdx.edu Novembe 10, 2014 Potland State Univesity asic Pocessing Unit ontol Signals Hadwied ontol Datapath contol signals Dealing with memoy delay Pipelining

More information

Lecture #22 Pipelining II, Cache I

Lecture #22 Pipelining II, Cache I inst.eecs.bekeley.edu/~cs61c CS61C : Machine Stuctues Lectue #22 Pipelining II, Cache I Wiewold cicuits 2008-7-29 http://www.maa.og/editoial/mathgames/mathgames_05_24_04.html http://www.quinapalus.com/wi-index.html

More information

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14 MIPS Pipelining Computer Organization Architectures for Embedded Computing Wednesday 8 October 14 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition, 2011, MK

More information

User Visible Registers. CPU Structure and Function Ch 11. General CPU Organization (4) Control and Status Registers (5) Register Organisation (4)

User Visible Registers. CPU Structure and Function Ch 11. General CPU Organization (4) Control and Status Registers (5) Register Organisation (4) PU Stuctue and Function h Geneal Oganisation Registes Instuction ycle Pipelining anch Pediction Inteupts Use Visible Registes Vaies fom one achitectue to anothe Geneal pupose egiste (GPR) ata, addess,

More information

Full Datapath. Chapter 4 The Processor 2

Full Datapath. Chapter 4 The Processor 2 Pipelining Full Datapath Chapter 4 The Processor 2 Datapath With Control Chapter 4 The Processor 3 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory

More information

Processor (II) - pipelining. Hwansoo Han

Processor (II) - pipelining. Hwansoo Han Processor (II) - pipelining Hwansoo Han Pipelining Analogy Pipelined laundry: overlapping execution Parallelism improves performance Four loads: Speedup = 8/3.5 =2.3 Non-stop: 2n/0.5n + 1.5 4 = number

More information

Lecture Topics. Announcements. Today: Data and Control Hazards (P&H ) Next: continued. Exam #1 returned. Milestone #5 (due 2/27)

Lecture Topics. Announcements. Today: Data and Control Hazards (P&H ) Next: continued. Exam #1 returned. Milestone #5 (due 2/27) Lecture Topics Today: Data and Control Hazards (P&H 4.7-4.8) Next: continued 1 Announcements Exam #1 returned Milestone #5 (due 2/27) Milestone #6 (due 3/13) 2 1 Review: Pipelined Implementations Pipelining

More information

LECTURE 3: THE PROCESSOR

LECTURE 3: THE PROCESSOR LECTURE 3: THE PROCESSOR Abridged version of Patterson & Hennessy (2013):Ch.4 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU

More information

Pipelining Analogy. Pipelined laundry: overlapping execution. Parallelism improves performance. Four loads: Non-stop: Speedup = 8/3.5 = 2.3.

Pipelining Analogy. Pipelined laundry: overlapping execution. Parallelism improves performance. Four loads: Non-stop: Speedup = 8/3.5 = 2.3. Pipelining Analogy Pipelined laundry: overlapping execution Parallelism improves performance Four loads: Speedup = 8/3.5 = 2.3 Non-stop: Speedup =2n/05n+15 2n/0.5n 1.5 4 = number of stages 4.5 An Overview

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Data Hazards in a Pipelined Datapath James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy Data

More information

Chapter 4 The Processor 1. Chapter 4B. The Processor

Chapter 4 The Processor 1. Chapter 4B. The Processor Chapter 4 The Processor 1 Chapter 4B The Processor Chapter 4 The Processor 2 Control Hazards Branch determines flow of control Fetching next instruction depends on branch outcome Pipeline can t always

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 17: Pipelining Wrapup Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Outline The textbook includes lots of information Focus on

More information

ECE154A Introduction to Computer Architecture. Homework 4 solution

ECE154A Introduction to Computer Architecture. Homework 4 solution ECE154A Introduction to Computer Architecture Homework 4 solution 4.16.1 According to Figure 4.65 on the textbook, each register located between two pipeline stages keeps data shown below. Register IF/ID

More information

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Introduction Chapter 4.1 Chapter 4.2 Review: MIPS (RISC) Design Principles Simplicity favors regularity fixed size instructions small number

More information

ECE473 Computer Architecture and Organization. Pipeline: Data Hazards

ECE473 Computer Architecture and Organization. Pipeline: Data Hazards Computer Architecture and Organization Pipeline: Data Hazards Lecturer: Prof. Yifeng Zhu Fall, 2015 Portions of these slides are derived from: Dave Patterson UCB Lec 14.1 Pipelining Outline Introduction

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Review: Moore s Law. EECS 252 Graduate Computer Architecture Lecture 2. Review: Joy s Law in ManyCore world. Bell s Law new class per decade

Review: Moore s Law. EECS 252 Graduate Computer Architecture Lecture 2. Review: Joy s Law in ManyCore world. Bell s Law new class per decade EECS 252 Gaduate Compute Achitectue Lectue 2 ℵ 0 Review of Instuction Sets, Pipelines, and Caches Januay 26 th, 2009 Review Mooe s Law John Kubiatowicz Electical Engineeing and Compute Sciences Univesity

More information

Lecture 9. Pipeline Hazards. Christos Kozyrakis Stanford University

Lecture 9. Pipeline Hazards. Christos Kozyrakis Stanford University Lecture 9 Pipeline Hazards Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee18b 1 Announcements PA-1 is due today Electronic submission Lab2 is due on Tuesday 2/13 th Quiz1 grades will

More information

DLX Unpipelined Implementation

DLX Unpipelined Implementation LECTURE - 06 DLX Unpipelined Implementation Five cycles: IF, ID, EX, MEM, WB Branch and store instructions: 4 cycles only What is the CPI? F branch 0.12, F store 0.05 CPI0.1740.83550.174.83 Further reduction

More information

Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard

Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard Consider: a = b + c; d = e - f; Assume loads have a latency of one clock cycle:

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering ECE260: Fundamentals of Computer Engineering Pipelined Datapath and Control James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania ECE260: Fundamentals of Computer Engineering

More information

Pipeline Data Hazards. Dealing With Data Hazards

Pipeline Data Hazards. Dealing With Data Hazards Pipeline Data Hazards Warning, warning, warning! Dealing With Data Hazards In Software inserting independent instructions In Hardware inserting bubbles (stalling the pipeline) data forwarding Data Data

More information

Chapter 4 The Processor 1. Chapter 4A. The Processor

Chapter 4 The Processor 1. Chapter 4A. The Processor Chapter 4 The Processor 1 Chapter 4A The Processor Chapter 4 The Processor 2 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture The Processor Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut CSE3666: Introduction to Computer Architecture Introduction CPU performance factors Instruction count

More information

The Processor (3) Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

The Processor (3) Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University The Processor (3) Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN 5 Edition th The Hardware/Software Interface Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count CPI and Cycle time Determined

More information

Department of Computer and IT Engineering University of Kurdistan. Computer Architecture Pipelining. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Computer Architecture Pipelining. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Computer Architecture Pipelining By: Dr. Alireza Abdollahpouri Pipelined MIPS processor Any instruction set can be implemented in many

More information

Pipeline Hazards. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Pipeline Hazards. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Pipeline Hazards Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Hazards What are hazards? Situations that prevent starting the next instruction

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 27: Midterm2 review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Midterm 2 Review Midterm will cover Section 1.6: Processor

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

EE2011 Computer Organization Lecture 10: Enhancing Performance with Pipelining ~ Pipelined Datapath

EE2011 Computer Organization Lecture 10: Enhancing Performance with Pipelining ~ Pipelined Datapath EE2011 Computer Organization Lecture 10: Enhancing Performance with Pipelining ~ Pipelined Datapath Wen-Yen Lin, Ph.D. Department of Electrical Engineering Chang Gung University Email: wylin@mail.cgu.edu.tw

More information

Full Datapath. Chapter 4 The Processor 2

Full Datapath. Chapter 4 The Processor 2 Pipelining Full Datapath Chapter 4 The Processor 2 Datapath With Control Chapter 4 The Processor 3 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory

More information

COMP2611: Computer Organization. The Pipelined Processor

COMP2611: Computer Organization. The Pipelined Processor COMP2611: Computer Organization The 1 2 Background 2 High-Performance Processors 3 Two techniques for designing high-performance processors by exploiting parallelism: Multiprocessing: parallelism among

More information

COSC 6385 Computer Architecture - Pipelining

COSC 6385 Computer Architecture - Pipelining COSC 6385 Computer Architecture - Pipelining Fall 2006 Some of the slides are based on a lecture by David Culler, Instruction Set Architecture Relevant features for distinguishing ISA s Internal storage

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 4 Processor Part 2: Pipelining (Ch.4) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations from Mike

More information

CSEE 3827: Fundamentals of Computer Systems

CSEE 3827: Fundamentals of Computer Systems CSEE 3827: Fundamentals of Computer Systems Lecture 21 and 22 April 22 and 27, 2009 martha@cs.columbia.edu Amdahl s Law Be aware when optimizing... T = improved Taffected improvement factor + T unaffected

More information

Designing a Pipelined CPU

Designing a Pipelined CPU Designing a Pipelined CPU Peer Instruction Lecture Materials for Computer Architecture by Dr. Leo Porter, adapted by Janet Davis, are licensed under a Creative Commons Attribution- NonCommercial-ShareAlike

More information

Overview of Control. CS 152 Computer Architecture and Engineering Lecture 11. Multicycle Controller Design

Overview of Control. CS 152 Computer Architecture and Engineering Lecture 11. Multicycle Controller Design S 152 ompute chitectue and Engineeing Lectue 11 Multicycle ontolle Design Oveview of ontol ontol may be designed using one of seveal initial epesentations. The choice of sequence contol, and how logic

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition The Processor - Introduction

More information

arxiv: v1 [cs.lo] 3 Dec 2018

arxiv: v1 [cs.lo] 3 Dec 2018 A high-level opeational semantics fo hadwae weak memoy models axiv:1812.00996v1 [cs.lo] 3 Dec 2018 Abstact Robet J. Colvin School of Electical Engineeing and Infomation Technology The Univesity of Queensland

More information

Outline. A pipelined datapath Pipelined control Data hazards and forwarding Data hazards and stalls Branch (control) hazards Exception

Outline. A pipelined datapath Pipelined control Data hazards and forwarding Data hazards and stalls Branch (control) hazards Exception Outline A pipelined datapath Pipelined control Data hazards and forwarding Data hazards and stalls Branch (control) hazards Exception 1 4 Which stage is the branch decision made? Case 1: 0 M u x 1 Add

More information

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor.

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor. COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor - Introduction

More information

ECEC 355: Pipelining

ECEC 355: Pipelining ECEC 355: Pipelining November 8, 2007 What is Pipelining Pipelining is an implementation technique whereby multiple instructions are overlapped in execution. A pipeline is similar in concept to an assembly

More information

CPE 335 Computer Organization. Basic MIPS Pipelining Part I

CPE 335 Computer Organization. Basic MIPS Pipelining Part I CPE 335 Computer Organization Basic MIPS Pipelining Part I Dr. Iyad Jafar Adapted from Dr. Gheith Abandah slides http://www.abandah.com/gheith/courses/cpe335_s08/index.html CPE232 Basic MIPS Pipelining

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

MIPS An ISA for Pipelining

MIPS An ISA for Pipelining Pipelining: Basic and Intermediate Concepts Slides by: Muhamed Mudawar CS 282 KAUST Spring 2010 Outline: MIPS An ISA for Pipelining 5 stage pipelining i Structural Hazards Data Hazards & Forwarding Branch

More information

Computer Organization and Structure

Computer Organization and Structure Computer Organization and Structure 1. Assuming the following repeating pattern (e.g., in a loop) of branch outcomes: Branch outcomes a. T, T, NT, T b. T, T, T, NT, NT Homework #4 Due: 2014/12/9 a. What

More information

Pre-requisites. This is a textbook-based course. Chapter 1. Pipelines, Performance, Caches, and Virtual Memory. January 2009 Paul H J Kelly

Pre-requisites. This is a textbook-based course. Chapter 1. Pipelines, Performance, Caches, and Virtual Memory. January 2009 Paul H J Kelly 332 Advanced Compute Achitectue Chapte 1 Intoduction and eview of Pipelines, Pefomance, Caches, and Vitual Januay 2009 Paul H J Kelly These lectue notes ae patly based on the couse text, Hennessy and Patteson

More information

RISC Pipeline. Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter 4.6

RISC Pipeline. Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter 4.6 RISC Pipeline Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University See: P&H Chapter 4.6 A Processor memory inst register file alu PC +4 +4 new pc offset target imm control extend =? cmp

More information

ELE 655 Microprocessor System Design

ELE 655 Microprocessor System Design ELE 655 Microprocessor System Design Section 2 Instruction Level Parallelism Class 1 Basic Pipeline Notes: Reg shows up two places but actually is the same register file Writes occur on the second half

More information

GCC-AVR Inline Assembler Cookbook Version 1.2

GCC-AVR Inline Assembler Cookbook Version 1.2 GCC-AVR Inline Assemble Cookbook Vesion 1.2 About this Document The GNU C compile fo Atmel AVR isk pocessos offes, to embed assembly language code into C pogams. This cool featue may be used fo manually

More information

Computer Architecture

Computer Architecture Lecture 3: Pipelining Iakovos Mavroidis Computer Science Department University of Crete 1 Previous Lecture Measurements and metrics : Performance, Cost, Dependability, Power Guidelines and principles in

More information

ECE 2300 Digital Logic & Computer Organization. More Caches Measuring Performance

ECE 2300 Digital Logic & Computer Organization. More Caches Measuring Performance ECE 23 Digital Logic & Computer Organization Spring 28 More s Measuring Performance Announcements HW7 due tomorrow :59pm Prelab 5(c) due Saturday 3pm Lab 6 (last one) released HW8 (last one) to be released

More information

CS 251, Winter 2018, Assignment % of course mark

CS 251, Winter 2018, Assignment % of course mark CS 251, Winter 2018, Assignment 5.0.4 3% of course mark Due Wednesday, March 21st, 4:30PM Lates accepted until 10:00am March 22nd with a 15% penalty 1. (10 points) The code sequence below executes on a

More information

Pipelining. Pipeline performance

Pipelining. Pipeline performance Pipelining Basic concept of assembly line Split a job A into n sequential subjobs (A 1,A 2,,A n ) with each A i taking approximately the same time Each subjob is processed by a different substation (or

More information

What is Pipelining? Time per instruction on unpipelined machine Number of pipe stages

What is Pipelining? Time per instruction on unpipelined machine Number of pipe stages What is Pipelining? Is a key implementation techniques used to make fast CPUs Is an implementation techniques whereby multiple instructions are overlapped in execution It takes advantage of parallelism

More information

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle?

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle? CSE 2021: Computer Organization Single Cycle (Review) Lecture-10b CPU Design : Pipelining-1 Overview, Datapath and control Shakil M. Khan 2 Single Cycle with Jump Multi-Cycle Implementation Instruction:

More information

Pipelined Processor Design

Pipelined Processor Design Pipelined Processor Design Pipelined Implementation: MIPS Virendra Singh Computer Design and Test Lab. Indian Institute of Science (IISc) Bangalore virendra@computer.org Advance Computer Architecture http://www.serc.iisc.ernet.in/~viren/courses/aca/aca.htm

More information

Pipeline Overview. Dr. Jiang Li. Adapted from the slides provided by the authors. Jiang Li, Ph.D. Department of Computer Science

Pipeline Overview. Dr. Jiang Li. Adapted from the slides provided by the authors. Jiang Li, Ph.D. Department of Computer Science Pipeline Overview Dr. Jiang Li Adapted from the slides provided by the authors Outline MIPS An ISA for Pipelining 5 stage pipelining Structural and Data Hazards Forwarding Branch Schemes Exceptions and

More information

Pipelined Processor Design

Pipelined Processor Design Pipelined Processor Design Pipelined Implementation: MIPS Virendra Singh Indian Institute of Science Bangalore virendra@computer.org Lecture 20 SE-273: Processor Design Courtesy: Prof. Vishwani Agrawal

More information

Pipelining. Maurizio Palesi

Pipelining. Maurizio Palesi * Pipelining * Adapted from David A. Patterson s CS252 lecture slides, http://www.cs.berkeley/~pattrsn/252s98/index.html Copyright 1998 UCB 1 References John L. Hennessy and David A. Patterson, Computer

More information

Midnight Laundry. IC220 Set #19: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Return to Chapter 4

Midnight Laundry. IC220 Set #19: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Return to Chapter 4 IC220 Set #9: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life Return to Chapter 4 Midnight Laundry Task order A B C D 6 PM 7 8 9 0 2 2 AM 2 Smarty Laundry Task order A B C D 6 PM

More information

Pipelining! Advanced Topics on Heterogeneous System Architectures. Politecnico di Milano! Seminar DEIB! 30 November, 2017!

Pipelining! Advanced Topics on Heterogeneous System Architectures. Politecnico di Milano! Seminar DEIB! 30 November, 2017! Advanced Topics on Heterogeneous System Architectures Pipelining! Politecnico di Milano! Seminar Room @ DEIB! 30 November, 2017! Antonio R. Miele! Marco D. Santambrogio! Politecnico di Milano! 2 Outline!

More information

Pipelining. CSC Friday, November 6, 2015

Pipelining. CSC Friday, November 6, 2015 Pipelining CSC 211.01 Friday, November 6, 2015 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory register file ALU data memory register file Not

More information

Accelerating Storage with RDMA Max Gurtovoy Mellanox Technologies

Accelerating Storage with RDMA Max Gurtovoy Mellanox Technologies Acceleating Stoage with RDMA Max Gutovoy Mellanox Technologies 2018 Stoage Develope Confeence EMEA. Mellanox Technologies. All Rights Reseved. 1 What is RDMA? Remote Diect Memoy Access - povides the ability

More information

Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining

Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining Single-Cycle Design Problems Assuming fixed-period clock every instruction datapath uses one

More information

Pipelining: Hazards Ver. Jan 14, 2014

Pipelining: Hazards Ver. Jan 14, 2014 POLITECNICO DI MILANO Parallelism in wonderland: are you ready to see how deep the rabbit hole goes? Pipelining: Hazards Ver. Jan 14, 2014 Marco D. Santambrogio: marco.santambrogio@polimi.it Simone Campanoni:

More information

CS 251, Winter 2019, Assignment % of course mark

CS 251, Winter 2019, Assignment % of course mark CS 251, Winter 2019, Assignment 5.1.1 3% of course mark Due Wednesday, March 27th, 5:30PM Lates accepted until 1:00pm March 28th with a 15% penalty 1. (10 points) The code sequence below executes on a

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor 1 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University The Processor Logic Design Conventions Building a Datapath A Simple Implementation Scheme An Overview of Pipelining Pipelined

More information

Pipeline Control Hazards and Instruction Variations

Pipeline Control Hazards and Instruction Variations Pipeline Control Hazards and Instruction Variations Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University See P&H Appendix 4.8 Goals for Today Recap: Data Hazards Control Hazards

More information

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards CISC 662 Graduate Computer Architecture Lecture 6 - Hazards Michela Taufer http://www.cis.udel.edu/~taufer/teaching/cis662f07 Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer

More information

Pipeline design. Mehran Rezaei

Pipeline design. Mehran Rezaei Pipeline design Mehran Rezaei How Can We Improve the Performance? Exec Time = IC * CPI * CCT Optimization IC CPI CCT Source Level * Compiler * * ISA * * Organization * * Technology * With Pipelining We

More information

CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards

CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Pipelined Execution Representation Time

More information

Chapter 4 (Part II) Sequential Laundry

Chapter 4 (Part II) Sequential Laundry Chapter 4 (Part II) The Processor Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu Sequential Laundry 6 P 7 8 9 10 11 12 1 2 A T a s k O r d e r A B C D 30 30 30 30 30 30 30 30 30 30

More information

Lecture 05: Pipelining: Basic/ Intermediate Concepts and Implementation

Lecture 05: Pipelining: Basic/ Intermediate Concepts and Implementation Lecture 05: Pipelining: Basic/ Intermediate Concepts and Implementation CSE 564 Computer Architecture Summer 2017 Department of Computer Science and Engineering Yonghong Yan yan@oakland.edu www.secs.oakland.edu/~yan

More information

Instruction Pipelining

Instruction Pipelining Instruction Pipelining Simplest form is a 3-stage linear pipeline New instruction fetched each clock cycle Instruction finished each clock cycle Maximal speedup = 3 achieved if and only if all pipe stages

More information