MEMORY-MAPPED I /O. Universiti Teknikal Malaysia Melaka. Input/Output System Design

Size: px
Start display at page:

Download "MEMORY-MAPPED I /O. Universiti Teknikal Malaysia Melaka. Input/Output System Design"

Transcription

1 Universiti Teknikal Malaysia Melaka Faculty of Electronics and Computer Engineering Department of Computer Engineering BENM 2123 MICROPROCESSOR TECHNOLOGY Instead of connecting to auxiliary memory, address $ to $7FFFFF can be used to interface to I/O peripherals. Address decoder must be set up to select the address range Program to read and write must pointing to this addresses For example, address $ is connected to 8-bit input switches while the next address is interfaced to 8-bit LEDs The memory-mapped I/O circuitry will be; To Octal buffer CS* From input peripheral Chapter 5: Address bus AS* 23 Address decoder R/W* UDS* LDS* R/W* 06/07 Masrullizam Mat Ibrahim From CS* Octal latch To output peripheral 1 06/07 Masrullizam Mat Ibrahim 3 MEMORY-MAPPED I /O Input/output peripherals are interfaced with in similar way to memory. The technique is called memory-mapped I/O Address decoders are used to mapped the peripherals to specific memory location Some part of memory location is used to communicate to outside world. For example, the training module you use in laboratory has the memory map as below $FFFFFF $A80000 $A7FFFF $A00000 $9FFFFF $ $87FFFF $ Unused area PI/T Illegal address DUART $7FFFFF $ $47FFFF $ $43FFFF $ Unused area Auxiliary memory RAM $ Firmware $ Memory location Normally used to store program data and other important information Memory-mapped I/O Using a memory location to communicate with outside world Operation in either word or byte Activate using address decoder Address Bus AS Address Decoder CPU Data Bus Latch External output device RAM ROM 06/07 Masrullizam Mat Ibrahim 2 06/07 Masrullizam Mat Ibrahim 4

2 Memory-Mapped I/O Vs I/O-Mapped I/O Memory Mapped I/O I/O Mapped I/O PARALLEL INTERFACE/TIMER (PI/T) Capable to perform parallel I/O communications One of the peripheral devices known as PI/T Consists of three bidirectional parallel ports Advantages 1. Any instruction that can access memory can access I/O device 2. Control bus requires one less signal Disadvantages 1. Memory space divided between memory ICs and I/O device 1. Full memory space available for RAM and ROM 2. Separate I/O space is conceptually simple 1. Only accessible through IN and OUT instruction 2. Extra control bus signal required Port PA, PB and PC Each port has eight parallel lines Direction of lines can be programmed Byte and word operation mode also can be set by programming Can be programmed to interrupt the When any port receives new data When 24-bit count down counter reaches Register model of the Port General Control Register (PGCR) Port Service Request Register (PSRR) Port {A,B,C} Data Direction Register (PxDDR) Port Interrupt Vector Register 06/07 Masrullizam Mat Ibrahim 5 06/07 Masrullizam Mat Ibrahim 7 The assembly program can be written as; MOVE.B $440000, D0 ;read from input switches MOVE.B $440001, D1 ;write to output LEDs Or, MOVEA.L #$440000, A0 ;set base address MOVE.B (A0)+, D0 ;read from input switches MOVE.B D0, (A0) ;write to output LEDs Port {A,B,C) Data Register (PxDR) Port {A,B} Alternate Data Register (PxADR) Port Status Register (PSR) Ports A and B be can be used as I/O ports with various handshaking and buffering capabilities in four different modes; Mode 0 Unidirectional 8 bit Transfer on A and B Mode 1 Unidirectional 16 bit Transfer port A in the MSB and port B in LSB Mode 2 Bidirectional 8 bit Transfer on B and bit I/O on A Mode 3 Bidirectional 16 bit Transfer port A in the MSB and port B in LSB 06/07 Masrullizam Mat Ibrahim 6 06/07 Masrullizam Mat Ibrahim 8

3 Figure below illustrates the interfacing between and Based on the PI/T initialization in lab experiments MOVEA.L #$A00001,A0 ;base address for PI/T MOVE.B #$80,+$C(A0) ;set Port A as bidirectional 8-bit MOVE.B #$FF,+$4(A0) ;set all bit Port A as output MOVE.B #$80,+$E(A0) ;set Port B as bidirectional 8-bit MOVE.B #$FF,+$6(A0) ;set all bit Port B as output Set operating mode for each port Mode Value Operation 0 $00 Unidirectional 8-bit transfer on port A and B 1 $40 Unidirectional 16-bit transfer. Port A is MSB, port B is LSB 2 $80 Bidirectional 8-bit transfer on port B, I/O on port A 3 $C0 Bidirectional 16-bit transfer. Port A is MSB, port B is LSB 06/07 Masrullizam Mat Ibrahim 9 06/07 Masrullizam Mat Ibrahim 11 Based on the PI/T initialization in lab experiments MOVEA.L #$A00001,A0 ;base address for PI/T MOVE.B #$80,+$C(A0) ;set Port A as unidirectional 8-bit MOVE.B #$00,+$4(A0) ;set all bit Port A as input MOVE.B #$80,+$E(A0) ;set Port B as unidirectional 8-bit MOVE.B #$FF,+$6(A0) ;set all bit Port B as output Set direction for each port Bit Operation 0 Line (bit) is input port 1 Line (bit) is output Base address for PI/T can also be written as MOVEA.L #PGCR, A0 ;point to port general control register Address for setting direction in Port A can also be written as MOVEA.L #PADDR, A0 ;point to Port A data direction register MOVE.B #$0,(A0) ;set all bit Port A as output 06/07 Masrullizam Mat Ibrahim 10 06/07 Masrullizam Mat Ibrahim 12

4 Example ADC MOVE.B +$10(A0),D0 *get value from adc to D0 MOVE.B #$90,+$12(A0) *turn heater OFF and motor on Port A and B data registers address Value +$10(A0) +$12(A0) Description Port A data register address ($A00011) Port B data register address ($A00013) A more exotic parallel application involve the use of a digital to analog converter (DAC) Figure in page 359 shows the circuitry of a bit DAC is connected to port B of The generation of square, ramp, triangle and sine waveforms can be done using this circuit With the assembly language, the frequency of the waveforms can be modified based on the application of your design Any data accessed via these ports is the data being read from input or written to output peripherals (depends on port direction setting) 06/07 Masrullizam Mat Ibrahim 13 06/07 Masrullizam Mat Ibrahim 15 Analog To Digital Counter Due to our natural environment is analog quantities such as temperature, pressure and strain These input data must be converted to digital value for microprocessor to process them Analog to digital converter such as 8-bit ADC0801 can be used to do the conversion Dual Universal Asynchronous Receiver/Transmitter (DUART) microprocessor 06/07 Masrullizam Mat Ibrahim 14 06/07 Masrullizam Mat Ibrahim 16

5 6821 parallel interface adapter (PIA) 06/07 Masrullizam Mat Ibrahim 17

Parallel Interfacing

Parallel Interfacing Chapter 12 Parallel Interfacing Expected Outcomes Identify the internal registers of MC6821 Design the hardware interface for various I/O devices using MC6821 Develop and write codes using MC6821 Parallel

More information

Real Time Operating Systems Application Board Details

Real Time Operating Systems Application Board Details Real Time Operating Systems Application Board Details Hardware Interface All labs involve writing a C program to generate an interface between a PC and an external Multi-Applications board. A 40-way ribbon

More information

EE 390 Lab Manual, EE Department, KFUPM. Experiment #7. Introduction to Flight86 Microprocessor Trainer and Application Board

EE 390 Lab Manual, EE Department, KFUPM. Experiment #7. Introduction to Flight86 Microprocessor Trainer and Application Board Experiment #7 Introduction to Flight86 Microprocessor Trainer and Application Board 7.0 Objectives: The objective of this experiment is to introduce the Flight86 Microprocessor training kit and application

More information

INTERFACING INTERFACING. Richa Upadhyay Prabhu. NMIMS s MPSTME February 25, 2016

INTERFACING INTERFACING. Richa Upadhyay Prabhu. NMIMS s MPSTME February 25, 2016 INTERFACING Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu February 25, 2016 8255: Programmable Peripheral Interface or Programmable Input output Device Introduction METHODS OF DATA TRANSFER

More information

8255 Programmable Peripheral Interface Architecture MCT/UNIT III/NARASIMHARAJ/LECTURE NOTES /IV MECH A

8255 Programmable Peripheral Interface Architecture MCT/UNIT III/NARASIMHARAJ/LECTURE NOTES /IV MECH A 8255 Programmable Peripheral Interface Architecture 8255 PPI Architecture The parallel input-output port chip 8255 is also called as programmable peripheral input- output port. The Intel s 8255 is designed

More information

I/O Design. Input / Output Instructions. Engineering 4862 Microprocessors. Lecture 23. Cheng Li

I/O Design. Input / Output Instructions. Engineering 4862 Microprocessors. Lecture 23. Cheng Li Engineering 4862 Microprocessors Lecture 23 Cheng Li EN-4012 licheng@engr.mun.ca I/O Design When designing an I/O port, ensure that the port is only active when selected by the microprocessor Use latches

More information

Lecture-50 Intel 8255A: Programming and Operating Modes

Lecture-50 Intel 8255A: Programming and Operating Modes Lecture-50 Intel 8255A: Programming and Operating Modes Operation Description: There are three basic modes of operation that can be selected by the system software. Mode 0: Basic Input/output Mode 1: Strobes

More information

ROM (4K X 8) ROM (4K X 8) FOLD BACK FOR RAM0 RWM - RAM (2K X 8) RWM - RAM (2K X 8) FOLD BACK FOR RAM1 INPUT DEVICE 1

ROM (4K X 8) ROM (4K X 8) FOLD BACK FOR RAM0 RWM - RAM (2K X 8) RWM - RAM (2K X 8) FOLD BACK FOR RAM1 INPUT DEVICE 1 Lecture-43 In previous lectures, we have interfaced memory chips, input and output devices separately with the processor. We shall now take up a problem which involves all i.e, ROM, RWM, input devices

More information

To Interface The 8085 Microprocessor

To Interface The 8085 Microprocessor To Interface The 8085 Microprocessor A microprocessor has to be interfaced with various peripherals to perform various functions. Let's discuss about the Interfacing techniques in detail. Introduction

More information

9. PERIPHERAL CHIPS 9a

9. PERIPHERAL CHIPS 9a 9. PERIPHERAL CHIPS 9a 8255: Programmable Peripheral Interface. Draw the pin diagram of PPI 8255. Ans. The pin diagram of 8255 is shown in Fig. 9a. PA 3 4 PA 4 PA2 2 39 PA 5 PA 3 38 PA 6 PA 4 37 PA7 RD

More information

Experiment No. 7 PARALLEL INTERFACING USING THE PERIPHERAL INTERFACE ADAPTER (PIA) ECE 441

Experiment No. 7 PARALLEL INTERFACING USING THE PERIPHERAL INTERFACE ADAPTER (PIA) ECE 441 Experiment No. 7 PARALLEL INTERFACING USING THE PERIPHERAL INTERFACE ADAPTER (PIA) ECE 441 Peter Chinetti November 21, 2013 1 Introduction 1.1 Purpose Date Performed: November 14, 2013 Partners: Zelin

More information

Basic I/O Interface

Basic I/O Interface Basic I/O Interface - 8255 11 3 THE PROGRAMMABLE PERIPHERAL 82C55 programmable peripheral interface (PPI) is a popular, low-cost interface component found in many applications. The PPI has 24 pins for

More information

Logic and Computer Design Fundamentals. Chapter 8 Memory Basics

Logic and Computer Design Fundamentals. Chapter 8 Memory Basics Logic and Computer Design Fundamentals Memory Basics Overview Memory definitions Random Access Memory (RAM) Static RAM (SRAM) integrated circuits Arrays of SRAM integrated circuits Dynamic RAM (DRAM) Read

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT IV I/O INTERFACING PART A (2 Marks)

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI UNIT IV I/O INTERFACING PART A (2 Marks) MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213. UNIT IV I/O INTERFACING PART A (2 Marks) 1. Name the three modes used by the DMA processor to transfer data? [NOV/DEC 2006] Signal transfer mode (cycling

More information

The Motorola PI/T

The Motorola PI/T The Motorola 623 PI/T bits wide H-H4 Port A Port A Data Register, PADR: $FF Data Direction Register, PADDR: $FF4 Port A Register, PACR: $FFC TCR TSR bits wide Port B Port B Data Register, PBDR: $FF2 Data

More information

Topics. Interfacing chips

Topics. Interfacing chips 8086 Interfacing ICs 2 Topics Interfacing chips Programmable Communication Interface PCI (8251) Programmable Interval Timer (8253) Programmable Peripheral Interfacing - PPI (8255) Programmable DMA controller

More information

CPE/EE 421/521 Fall 2004 Chapter 4 The CPU Hardware Model. Dr. Rhonda Kay Gaede UAH. The CPU Hardware Model - Overview

CPE/EE 421/521 Fall 2004 Chapter 4 The CPU Hardware Model. Dr. Rhonda Kay Gaede UAH. The CPU Hardware Model - Overview CPE/EE 421/521 Fall 2004 Chapter 4 The 68000 CPU Hardware Model Dr. Rhonda Kay Gaede UAH Fall 2004 1 The 68000 CPU Hardware Model - Overview 68000 interface Timing diagram Minimal configuration using the

More information

UNIT 3 THE 8051-REAL WORLD INTERFACING

UNIT 3 THE 8051-REAL WORLD INTERFACING UNIT 3 THE 8051-REAL WORLD INTERFACING 8031/51 INTERFACING TO EXTERNAL MEMORY The number of bits that a semiconductor memory chip can store is called chip capacity It can be in units of Kbits (kilobits),

More information

CSCE 312 Lab manual. Lab 4 - Computer Organization and Data Path Design. Instructor: Dr. Yum. Fall 2016

CSCE 312 Lab manual. Lab 4 - Computer Organization and Data Path Design. Instructor: Dr. Yum. Fall 2016 CSCE 312 Lab manual Lab 4 - Computer Organization and Data Path Design Instructor: Dr. Yum Fall 2016 Department of Computer Science & Engineering Texas A&M University Chapter 5: Computer Organization and

More information

Chapter ELEVEN 8255 I/O PROGRAMMING

Chapter ELEVEN 8255 I/O PROGRAMMING Chapter ELEVEN 8255 I/O PROGRAMMING OBJECTIVES this chapter enables the student to: Code Assembly language instructions to read and write data to and from I/O ports. Diagram the design of peripheral I/O

More information

Lecture 12: PI/T parallel I/O, part II

Lecture 12: PI/T parallel I/O, part II Lecture 12: PI/T parallel I/O, part II Terms ad defiitios PI/T modes of operatio Modes ad sub-modes A example i C lauae Microprocessor-based System Desi Wriht State Uiversity 1 Term ad symbol defiitios

More information

BASIC INTERFACING CONCEPTS

BASIC INTERFACING CONCEPTS Contents i SYLLABUS UNIT - I 8085 ARCHITECTURE Introduction to Microprocessors and Microcontrollers, 8085 Processor Architecture, Internal Operations, Instructions and Timings, Programming the 8085-Introduction

More information

6 Direct Memory Access (DMA)

6 Direct Memory Access (DMA) 1 License: http://creativecommons.org/licenses/by-nc-nd/3.0/ 6 Direct Access (DMA) DMA technique is used to transfer large volumes of data between I/O interfaces and the memory. Example: Disk drive controllers,

More information

School of Computer Science Faculty of Engineering and Computer Science Student ID Number. Lab Cover Page. Lab Date and Time:

School of Computer Science Faculty of Engineering and Computer Science Student ID Number. Lab Cover Page. Lab Date and Time: Student Information First Name School of Computer Science Faculty of Engineering and Computer Science Last Name Student ID Number Lab Cover Page Please complete all fields: Course Name: Structure and Application

More information

Computer Architecture: Part V. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University

Computer Architecture: Part V. First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Computer Architecture: Part V First Semester 2013 Department of Computer Science Faculty of Science Chiang Mai University Outline Addition and Subtraction Multiplication Algorithm Array Multiplier Peripheral

More information

Microcomputer Architecture and Programming

Microcomputer Architecture and Programming IUST-EE (Chapter 1) Microcomputer Architecture and Programming 1 Outline Basic Blocks of Microcomputer Typical Microcomputer Architecture The Single-Chip Microprocessor Microprocessor vs. Microcontroller

More information

EXPERIMENT #7 PARALLEL INTERFACING USING THE PERIPHERAL INTERFACE ADAPTER (PIA)

EXPERIMENT #7 PARALLEL INTERFACING USING THE PERIPHERAL INTERFACE ADAPTER (PIA) EXPERIMENT #7 PARALLEL INTERFACING USING THE PERIPHERAL INTERFACE ADAPTER (PIA) 1.0 Procedure The purpose of this experiment is to introduce the student to the following topics: the Peripheral Interface

More information

END-TERM EXAMINATION

END-TERM EXAMINATION (Please Write your Exam Roll No. immediately) END-TERM EXAMINATION DECEMBER 2006 Exam. Roll No... Exam Series code: 100919DEC06200963 Paper Code: MCA-103 Subject: Digital Electronics Time: 3 Hours Maximum

More information

Microcontrollers. Principles and Applications. Ajit Pal +5 V 2K 8. 8 bit dip switch. P2 8 Reset switch Microcontroller AT89S52 100E +5 V. 2.

Microcontrollers. Principles and Applications. Ajit Pal +5 V 2K 8. 8 bit dip switch. P2 8 Reset switch Microcontroller AT89S52 100E +5 V. 2. Ajit Pal Microcontrollers Principles and Applications +5 V 2K 8 8 bit dip switch P2 8 Reset switch Microcontroller AT89S52 100E +5 V +5 V 2.2K 10 uf RST 7 Segment common anode LEDs P1(0-6) & P3(0-6) 7

More information

PIO 8255 (cont..) M Krishna kumar MAM/M3/LU9e/V1/2004 1

PIO 8255 (cont..) M Krishna kumar MAM/M3/LU9e/V1/2004 1 PIO 8255 (cont..) The parallel input-output port chip 8255 is also called as programmable peripheral input-output port. The Intel s 8255 is designed for use with Intel s 8-bit, 16-bit and higher capability

More information

2. (2 pts) If an external clock is used, which pin of the 8051 should it be connected to?

2. (2 pts) If an external clock is used, which pin of the 8051 should it be connected to? ECE3710 Exam 2. Name _ Spring 2013. 5 pages. 102 points, but scored out of 100. You may use any non-living resource to complete this exam. Any hint of cheating will result in a 0. Part 1 Short Answer 1.

More information

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices,

Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, Understanding the basic building blocks of a microcontroller device in general. Knows the terminologies like embedded and external memory devices, CISC and RISC processors etc. Knows the architecture and

More information

CHAPTER TWELVE - Memory Devices

CHAPTER TWELVE - Memory Devices CHAPTER TWELVE - Memory Devices 12.1 6x1,024 = 16,384 words; 32 bits/word; 16,384x32 = 524,288 cells 12.2 16,384 addresses; one per word. 12.3 2 16 = 65,536 words = 64K. Thus, memory capacity is 64Kx4.

More information

Microprocessor Architecture. mywbut.com 1

Microprocessor Architecture. mywbut.com 1 Microprocessor Architecture mywbut.com 1 Microprocessor Architecture The microprocessor can be programmed to perform functions on given data by writing specific instructions into its memory. The microprocessor

More information

LAB 1: MC68000 CPU PROGRAMMING DATA TRANSFER INSTRUCTIONS

LAB 1: MC68000 CPU PROGRAMMING DATA TRANSFER INSTRUCTIONS LAB 1: MC68000 CPU PROGRAMMING DATA TRANSFER INSTRUCTIONS OBJECTIVES At the end of the laboratory works, you should be able to write simple assembly language programs for the MC68000 CPU using data transfer

More information

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET

SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET 1 SYLLABUS UNIT - I 8086/8088 ARCHITECTURE AND INSTRUCTION SET Intel 8086/8088 Architecture Segmented Memory, Minimum and Maximum Modes of Operation, Timing Diagram, Addressing Modes, Instruction Set,

More information

Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface

Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface Chapter 8 Summary: The 8086 Microprocessor and its Memory and Input/Output Interface Figure 1-5 Intel Corporation s 8086 Microprocessor. The 8086, announced in 1978, was the first 16-bit microprocessor

More information

Computer Hardware Requirements for Real-Time Applications

Computer Hardware Requirements for Real-Time Applications Lecture (4) Computer Hardware Requirements for Real-Time Applications Prof. Kasim M. Al-Aubidy Computer Engineering Department Philadelphia University Real-Time Systems, Prof. Kasim Al-Aubidy 1 Lecture

More information

This set of Microprocessor Multiple Choice Questions & Answers (MCQs) focuses on PIO 8255 (Programmable Input Output Port).

This set of Microprocessor Multiple Choice Questions & Answers (MCQs) focuses on PIO 8255 (Programmable Input Output Port). This set of Microprocessor Multiple Choice Questions & Answers (MCQs) focuses on PIO 8255 (Programmable Input Output Port). 1. Programmable peripheral input-output port is other name for a) serial input-output

More information

Embedded Systems. Read pages

Embedded Systems. Read pages Embedded Systems Read pages 385-417 Definition of Embedded Systems Embedded systems Computer dedicated to serve specific purposes Many physical systems today use computer for powerful and intelligent applications

More information

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422)

DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE422) Memory In computing, memory refers to the computer hardware devices used to store information for immediate use

More information

Introduction to Computers - Chapter 4

Introduction to Computers - Chapter 4 Introduction to Computers - Chapter 4 Since the invention of the transistor and the first digital computer of the 1940s, computers have been increasing in complexity and performance; however, their overall

More information

Microprocessors/Microcontrollers

Microprocessors/Microcontrollers Microprocessors/Microcontrollers A central processing unit (CPU) fabricated on one or more chips, containing the basic arithmetic, logic, and control elements of a computer that are required for processing

More information

3. (a) Explain the steps involved in the Interfacing of an I/O device (b) Explain various methods of interfacing of I/O devices.

3. (a) Explain the steps involved in the Interfacing of an I/O device (b) Explain various methods of interfacing of I/O devices. Code No: R05320202 Set No. 1 1. (a) Discuss the minimum mode memory control signals of 8086? (b) Explain the write cycle operation of the microprocessor with a neat timing diagram in maximum mode. [8+8]

More information

Principles of Digital Techniques PDT (17320) Assignment No State advantages of digital system over analog system.

Principles of Digital Techniques PDT (17320) Assignment No State advantages of digital system over analog system. Assignment No. 1 1. State advantages of digital system over analog system. 2. Convert following numbers a. (138.56) 10 = (?) 2 = (?) 8 = (?) 16 b. (1110011.011) 2 = (?) 10 = (?) 8 = (?) 16 c. (3004.06)

More information

Microcontroller basics

Microcontroller basics FYS3240 PC-based instrumentation and microcontrollers Microcontroller basics Spring 2017 Lecture #4 Bekkeng, 30.01.2017 Lab: AVR Studio Microcontrollers can be programmed using Assembly or C language In

More information

TUG Combo Board

TUG Combo Board TUG Combo Board Overview These notes supplement the Combo Board Manual providing a functional overview of the description and operation of the board. (Note: This Version does not yet fully cover the 6116

More information

History and Basic Processor Architecture

History and Basic Processor Architecture History and Basic Processor Architecture History of Computers Module 1 Section 1 What Is a Computer? An electronic machine, operating under the control of instructions stored in its own memory, that can

More information

Microcontroller & Interfacing

Microcontroller & Interfacing Course Title Course Code Microcontroller & Interfacing EC406 Lecture : 3 Course Credit Practical : 1 Tutorial : 0 Total : 4 Course Objective At the end of the course the students will be able to Understand

More information

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS. 3.Give any two differences between microprocessor and micro controller.

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS. 3.Give any two differences between microprocessor and micro controller. UNIT V -8051 MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS 1. What is micro controller? Micro controller is a microprocessor with limited number of RAM, ROM, I/O ports and timer on a single chip

More information

EET2411 DIGITAL ELECTRONICS. A device or electrical circuit used to store a single bit (0 or 1) Ex. FF.

EET2411 DIGITAL ELECTRONICS. A device or electrical circuit used to store a single bit (0 or 1) Ex. FF. Chapter 12 - Memory Devices Digital information is easily stored Commonly used memory devices and systems will be examined Flip flops Registers VLSI and LSI memory devices The difference between main memory

More information

COMPUTER ORGANIZATION AND ARCHITECTURE

COMPUTER ORGANIZATION AND ARCHITECTURE Page 1 1. Which register store the address of next instruction to be executed? A) PC B) AC C) SP D) NONE 2. How many bits are required to address the 128 words of memory? A) 7 B) 8 C) 9 D) NONE 3. is the

More information

VALLIAMMAI ENGINERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING SUBJECT CODE / NAME: ME6702 / MECHATRONICS YEAR/SEM: IV /VII UNIT 1: INTRODUCTION 1. List out the types of systems. BT-1 2. Describe the

More information

Chapter 14. Motorola MC68HC11 Family MCU Architecture

Chapter 14. Motorola MC68HC11 Family MCU Architecture Chapter 14 Motorola MC68HC11 Family MCU Architecture Lesson 1 68HC11 MCU Architecture overview 2 Outline CPU Registers, MCU Architecture overview Address and Data Buses Execution Unit- ALU Ports 3 CPU

More information

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language The x86 Microprocessors Introduction 1.1 Assembly Language Numbering and Coding Systems Human beings use the decimal system (base 10) Decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Computer systems use the

More information

3. The MC6802 MICROPROCESSOR

3. The MC6802 MICROPROCESSOR 3. The MC6802 MICROPROCESSOR This chapter provides hardware detail on the Motorola MC6802 microprocessor to enable the reader to use of this microprocessor. It is important to learn the operation and interfacing

More information

Scheme G. Sample Test Paper-I

Scheme G. Sample Test Paper-I Sample Test Paper-I Marks : 25 Times:1 Hour 1. All questions are compulsory. 2. Illustrate your answers with neat sketches wherever necessary. 3. Figures to the right indicate full marks. 4. Assume suitable

More information

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085.

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085. (1) Draw and explain the internal architecture of 8085. The architecture of 8085 Microprocessor is shown in figure given below. The internal architecture of 8085 includes following section ALU-Arithmetic

More information

Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers

Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers Lecture (4) Computer Hardware Requirements for ERTSs: Microprocessors & Microcontrollers Prof. Kasim M. Al-Aubidy Philadelphia University-Jordan DERTS-MSc, 2015 Prof. Kasim Al-Aubidy 1 Lecture Outline:

More information

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing

Microcontroller Systems. ELET 3232 Topic 11: General Memory Interfacing Microcontroller Systems ELET 3232 Topic 11: General Memory Interfacing 1 Objectives To become familiar with the concepts of memory expansion and the data and address bus To design embedded systems circuits

More information

LABORATORY 1 INTRODUCTION TO 8085 MICROPROCESSOR DEVELOPMENT SYSTEM BOARD

LABORATORY 1 INTRODUCTION TO 8085 MICROPROCESSOR DEVELOPMENT SYSTEM BOARD LABORATORY 1 INTRODUCTION TO 8085 MICROPROCESSOR DEVELOPMENT SYSTEM BOARD 1. INTRODUCTION TO 8085 MICROPROCESSOR DEVELOPMENT SYSTEMS. The basic components of the 8085 Microprocessor Development System

More information

CN310 Microprocessor Systems Design

CN310 Microprocessor Systems Design CN310 Microprocessor Systems Design Simple Computer Nawin Somyat Department of Electrical and Computer Engineering Thammasat University Outline Course Contents 1 Introduction 2 Simple Computer 3 Microprocessor

More information

Microcontroller interfaces

Microcontroller interfaces Microcontroller interfaces 1 Microcontroller interfaces Microcontroller interfaces Digital Analog Serial Parallel Binary (on/off) Voltage Current Asynchronous Synchronous 1-wire RS232/485 Ethernet 2-wire

More information

CPE/EE 421 Microcomputers

CPE/EE 421 Microcomputers CPE/EE 421 Microcomputers THE 68000 CPU HARDWARE MODEL Instructor: Dr Aleksandar Milenkovic Lecture Notes Lecture 19 CPE/EE 421/521 Microcomputers 1 THE 68000 CPU HARDWARE MODEL Chapter 4 68000 interface

More information

Interface DAC to a PC. Control Word of MC1480 DAC (or DAC 808) 8255 Design Example. Engineering 4862 Microprocessors

Interface DAC to a PC. Control Word of MC1480 DAC (or DAC 808) 8255 Design Example. Engineering 4862 Microprocessors Interface DAC to a PC Engineering 4862 Microprocessors Lecture 22 Cheng Li EN-4012 licheng@engr.mun.ca DAC (Digital-to-Analog Converter) Device used to convert digital pulses to analog signals Two methods

More information

MICROCONTROLLER AND PLC LAB-436 SEMESTER-5

MICROCONTROLLER AND PLC LAB-436 SEMESTER-5 MICROCONTROLLER AND PLC LAB-436 SEMESTER-5 Exp:1 STUDY OF MICROCONTROLLER 8051 To study the microcontroller and familiarize the 8051microcontroller kit Theory:- A Microcontroller consists of a powerful

More information

LAB 1 Introduction to 8085 Microprocessor Development System Board

LAB 1 Introduction to 8085 Microprocessor Development System Board EKT222 - Microprocessor System LAB 1 LAB 1 Introduction to 8085 Microprocessor Development System Board Microprocessor Laboratory page 1 EKT222 - Microprocessor System LAB 1 8085 Microprocessor Development

More information

Microprocessor and Microcontroller question bank. 1 Distinguish between microprocessor and microcontroller.

Microprocessor and Microcontroller question bank. 1 Distinguish between microprocessor and microcontroller. Course B.E(EEE) Batch 2015 Semester V Subject code subject Name UAEE503 Microprocessor and Microcontroller question bank UNIT-1 Architecture of a Microprocessor PART-A Marks: 2 1 Distinguish between microprocessor

More information

PRACTICAL DESIGN TECHNIQUES FOR SENSOR SIGNAL CONDITIONING

PRACTICAL DESIGN TECHNIQUES FOR SENSOR SIGNAL CONDITIONING 9 PRACTICAL DESIGN TECHNIQUES FOR SENSOR SIGNAL CONDITIONING 1 Introduction 2 Bridge Circuits 3 Amplifiers for Signal Conditioning 4 Strain, Force, Pressure, and Flow Measurements 5 High Impedance Sensors

More information

1 Digital tools. 1.1 Introduction

1 Digital tools. 1.1 Introduction 1 Digital tools 1.1 Introduction In the past few years, enormous advances have been made in the cost, power, and ease of use of microcomputers and associated analog and digital circuits. It is now possible,

More information

Data Acquisition Using INS8048

Data Acquisition Using INS8048 Data Acquisition Using INS8048 Abstract This application note describes techniques for interfacing National Semiconductor s ADC0833 serial I O and ADC0804 parallel I O A D converters to the INS8048 family

More information

GUJARAT TECHNOLOGICAL UNIVERSITY

GUJARAT TECHNOLOGICAL UNIVERSITY GUJARAT TECHNOLOGICAL UNIVERSITY INSTRUMENTATION & CONTROL ENGINEERING (17) MICROCONTROLLER & INTERFACING (IC) SUBJECT CODE: 21517 B.E. 5 th SEMESTER Type of course: Core Engineering Prerequisite: 1. Fundamental

More information

Question Bank Microprocessor and Microcontroller

Question Bank Microprocessor and Microcontroller QUESTION BANK - 2 PART A 1. What is cycle stealing? (K1-CO3) During any given bus cycle, one of the system components connected to the system bus is given control of the bus. This component is said to

More information

Central Processing Unit. Steven R. Bagley

Central Processing Unit. Steven R. Bagley Central Processing Unit Steven R. Bagley Introduction So far looked at the technology underpinning computers Logic signals to cause things to happen, and represent numbers Boolean gates to combine and

More information

PART B (5 x 16 =80) ADDRESS BUS The 8085 has eight signal lines, A15 A8 : Unidirectional, known as high order address.

PART B (5 x 16 =80) ADDRESS BUS The 8085 has eight signal lines, A15 A8 : Unidirectional, known as high order address. PART B (5 x 16 =80) 1. Explain with a help of neat diagram of Pin out details of 8085 microprocessor. Intel 8085 consists of 40 pins and signal can be classified as follow: Address Bus. Data Bus. Control

More information

TUTORIAL Describe the circumstances that would prompt you to use a microprocessorbased design solution instead of a hard-wired IC logic design.

TUTORIAL Describe the circumstances that would prompt you to use a microprocessorbased design solution instead of a hard-wired IC logic design. TUTORIAL 1 1. Make a list of 10 products containing microprocessors that we use everyday. Personal computer Television Calculator Elevator Mobile phones MP3 players Microwave ovens DVD players Engine Control

More information

Interconnects, Memory, GPIO

Interconnects, Memory, GPIO Interconnects, Memory, GPIO Dr. Francesco Conti f.conti@unibo.it Slide contributions adapted from STMicroelectronics and from Dr. Michele Magno, others Processor vs. MCU Pipeline Harvard architecture Separate

More information

Chapter 8 Memory Basics

Chapter 8 Memory Basics Logic and Computer Design Fundamentals Chapter 8 Memory Basics Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Overview Memory definitions Random Access

More information

EC 6504 MICROPROCESSOR AND MICROCONTROLLER

EC 6504 MICROPROCESSOR AND MICROCONTROLLER DEPARTMENTOFELECTRONICS&COMMUNICATIONENGINEERING EC 6504 MICROPROCESSOR AND MICROCONTROLLER UNIT I THE 8086 MICROPROCESSOR PARTA 1. What is microprocessor? What is the difference between a MP and CPU?

More information

The 9S12 in Expanded Mode - Using MSI logic to build ports Huang Chapter 14

The 9S12 in Expanded Mode - Using MSI logic to build ports Huang Chapter 14 The 9S12 in Expanded Mode - Using MSI logic to build ports Huang Chapter 14 Using MSI Logic To Build An Output Port Many designs use standard MSI logic for microprocessor expansion This provides an inexpensive

More information

THE MICROCOMPUTER SYSTEM CHAPTER - 2

THE MICROCOMPUTER SYSTEM CHAPTER - 2 THE MICROCOMPUTER SYSTEM CHAPTER - 2 20 2.1 GENERAL ASPECTS The first computer was developed using vacuum tubes. The computers thus developed were clumsy and dissipating more power. After the invention

More information

INTRODUCTION TO MICROPROCESSORS

INTRODUCTION TO MICROPROCESSORS INTRODUCTION TO MICROPROCESSORS Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu January 7, 2016 Richa Upadhyay Prabhu (MPSTME) INTRODUCTION January 7, 2016 1 / 63 Course Design Prerequisite:

More information

SANKALCHAND PATEL COLLEGE OF ENGINEERING, VISNAGAR. ELECTRONICS & COMMUNICATION DEPARTMENT Question Bank- 1

SANKALCHAND PATEL COLLEGE OF ENGINEERING, VISNAGAR. ELECTRONICS & COMMUNICATION DEPARTMENT Question Bank- 1 SANKALCHAND PATEL COLLEGE OF ENGINEERING, VISNAGAR ELECTRONICS & COMMUNICATION DEPARTMENT Question Bank- 1 Subject: Microcontroller and Interfacing (151001) Class: B.E.Sem V (EC-I & II) Q-1 Explain RISC

More information

Home Automation System

Home Automation System A-level Electronics Major Project Home Automation System Theodore Markettos 25th March 1997 PDF conversion by GhostScript 5.10 2 Contents Summary...1 Part 1: The microprocessor system Choice of microprocessor...3

More information

Unit 6 1.Random Access Memory (RAM) Chapter 3 Combinational Logic Design 2.Programmable Logic

Unit 6 1.Random Access Memory (RAM) Chapter 3 Combinational Logic Design 2.Programmable Logic EE 200: Digital Logic Circuit Design Dr Radwan E Abdel-Aal, COE Unit 6.Random Access Memory (RAM) Chapter 3 Combinational Logic Design 2. Logic Logic and Computer Design Fundamentals Part Implementation

More information

Chapter Operation Pinout Operation 35

Chapter Operation Pinout Operation 35 68000 Operation 35 Chapter 6 68000 Operation 6-1. 68000 Pinout We will do no construction in this chapter; instead, we will take a detailed look at the individual pins of the 68000 and what they do. Fig.

More information

Computer Architecture Dr. Charles Kim Howard University

Computer Architecture Dr. Charles Kim Howard University EECE416 Microcomputer Fundamentals & Design Computer Architecture Dr. Charles Kim Howard University 1 Computer Architecture Computer Architecture Art of selecting and interconnecting hardware components

More information

CC411: Introduction To Microprocessors

CC411: Introduction To Microprocessors CC411: Introduction To Microprocessors OBJECTIVES this chapter enables the student to: Describe the Intel family of microprocessors from 8085 to Pentium. In terms of bus size, physical memory & special

More information

CREATED BY M BILAL & Arslan Ahmad Shaad Visit:

CREATED BY M BILAL & Arslan Ahmad Shaad Visit: CREATED BY M BILAL & Arslan Ahmad Shaad Visit: www.techo786.wordpress.com Q1: Define microprocessor? Short Questions Chapter No 01 Fundamental Concepts Microprocessor is a program-controlled and semiconductor

More information

Exercise 1: Static Control of a Data Bus

Exercise 1: Static Control of a Data Bus Exercise 1: Static Control of a Data Bus EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate the function of the CS signal and R/W signal in controlling data transfer

More information

Microcontroller Systems

Microcontroller Systems µcontroller systems 1 / 38 Microcontroller Systems Engineering Science 2nd year A2 Lectures Prof David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/2co Michaelmas 2014 µcontroller

More information

CHAPTER: 3 PROGRAMMABLE PERIPHERAL INTERFACE & ELECTROMECHANICAL DEVICES INTERFACING

CHAPTER: 3 PROGRAMMABLE PERIPHERAL INTERFACE & ELECTROMECHANICAL DEVICES INTERFACING CHAPTER: 3 1 PROGRAMMABLE PERIPHERAL INTERFACE & ELECTROMECHANICAL DEVICES INTERFACING Introduction to 8255 PPI 2 The Intel 8255A is a high-performance, general purpose programmable I/O device is designed

More information

Module Title: Microprocessor Systems 2

Module Title: Microprocessor Systems 2 CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ Autumn Examinations 2008/09 Module Title: Microprocessor Systems 2 Module Code: ELTR6017 School: Electrical and Electronic Engineering Programme

More information

Microprocessors I MICROCOMPUTERS AND MICROPROCESSORS

Microprocessors I MICROCOMPUTERS AND MICROPROCESSORS Microprocessors I Outline of the Lecture Microcomputers and Microprocessors Evolution of Intel 80x86 Family Microprocessors Binary and Hexadecimal Number Systems MICROCOMPUTERS AND MICROPROCESSORS There

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) MODEL ANSWER

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) MODEL ANSWER MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Microprocessor Subject Code: 17443 I m p o r t a n t I n s t r u c t i o n s t o e x a m i n e r s : 1) The answers should be examined by key words and

More information

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers AVR Architecture Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA January 23, 2018 Aly El-Osery (NMT) EE 308:

More information

Z Z-280 MT8930, MT8992/3/4/5 MT8880 MT8888 MT8889 MT8980/1 MT8985, MT8986 (DIP-40) MT8986 (PLCC-44) MT8920B MT8952B

Z Z-280 MT8930, MT8992/3/4/5 MT8880 MT8888 MT8889 MT8980/1 MT8985, MT8986 (DIP-40) MT8986 (PLCC-44) MT8920B MT8952B MSAN-145 How to Interface Mitel Components to Parallel Bus CPUs TABL OF CONTNTS Introduction ISSU 1 August 1993 1.0 Group 1 Components 1.1 Interfacing to the 6802 1.2 Interfacing to the 6809 1.3 Interfacing

More information

QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS

QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 QUESTION BANK CS2252 MICROPROCESSOR AND MICROCONTROLLERS UNIT 1 - THE 8085 AND 8086

More information

The Microcontroller. Lecture Set 3. Major Microcontroller Families. Example Microcontroller Families Cont. Example Microcontroller Families

The Microcontroller. Lecture Set 3. Major Microcontroller Families. Example Microcontroller Families Cont. Example Microcontroller Families The Microcontroller Lecture Set 3 Architecture of the 8051 Microcontroller Microcontrollers can be considered as self-contained systems with a processor, memory and I/O ports. In most cases, all that is

More information

EE2007 Microprocessor systems.

EE2007 Microprocessor systems. EE2007 Microprocessor systems Tutorial 1 Semester 1 AY 2010-11 Ganesh Iyer ganesh.vigneswara@gmail.com (facebook, gtalk) http://ganeshniyer.com About Me I have 3 years of Industry work experience in Bangalore,

More information