Micro transductors 08

Size: px
Start display at page:

Download "Micro transductors 08"

Transcription

1 Micro transductors 8 CMOS Basics Dr.-Ing. Frank Sill Department of Electrical Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CEP: 327-, Belo Horizonte (MG), Brazil franksill@ufmg.br

2 Announcement Next class: Thursday, 3. March Room 38 CCE Micro transductors 8, CMOS Basics 2

3 Optional Topics Please, choose 2 out of the following 4 topics Final date: 4 th of March. Future trends in VLSI design 2. Basics of Hspice-Simulations 3. Effects in nanometer CMOS circuits 4. Reliability problems in current and future designs Micro transductors 8, CMOS Basics 3

4 Goals Where do we find Integrated Ciruits? History and Trends CMOS: basic ideas Logic gates Delay estimation Sizing Micro transductors 8, CMOS Basics 4

5 Where do we find chips? Computer are the workhorses of the semiconductors industry. % 8% Processors Memory Logic Motivation Performance Flexibility Mobility 6% 4% 2% Analog Discretes Optoelectronics/ Sensors/Bipolar ~ 2 % are processors ~ 6.5 Billion processors per year ~ 4 % of all parts are used in the PC area % Units Revenue Source: WSTS 2 Micro transductors 8, CMOS Basics 5

6 Scenarios Obviously tasks High performance demands Fast execution Micro transductors 8, CMOS Basics 6

7 Scenarios cont d Hidden helper Low performance demands Micro transductors 8, CMOS Basics 7

8 History 96 Semiconductors used to detect radio signals 925 FET concept patent by J. Lilienfeld 94 Z3 by Konrad Zuse first computer 946 ENIAC first electronic computer 947 Transistor Invented AT&T ignores Lilienfeld Bardeen, Brattain and Schockley, AT&T, Nobel Prize in Integrated Circuit Kilby & Noyce (died 99) Kilby - Noble Prize in MOSFET manufactured and patented CMOS logic invented Resistors replaced by transistors Micro transductors 8, CMOS Basics 8

9 History cont d Zuse Z3 First computer* (94) First working programmable, fully automatic computing machine 2, Relays Clock frequency of ~5 - Hz Word length of 22 bits Programmed by punched film stock Addition, Multiplication, Division, Square root * Elected at st International Conference on the History of Computing" in Paderborn, Germany, 998 Micro transductors 8, CMOS Basics 9

10 History cont d ENIAC First electronic computer (946) Electronic Numerical Integrator And Computer At Moore School of Electrical Engineering, University of Pennsylvania 7,468 vacuum tubes, 7,2 diodes (+ ca. 8k resistors & capacitors) 5 Million hand-soldered joints Micro transductors 8, CMOS Basics

11 History cont d Vacuum Tubes in ENIAC Micro transductors 8, CMOS Basics

12 History cont d (a) First transistor (947, Bardeen & Brattain, Bell labs) (b) First integrated circuit (958, Kilby, AT&T) Source: Weste, CMOS VLSI design,23 Micro transductors 8, CMOS Basics 2

13 Moore s Law Prediction by Gordon Moore in 965 Semiconductor technology will double its effectiveness every 8 months Year Micro transductors 8, CMOS Basics Log2 of the Number of Components Per Integrated Function Source: Moore, 665 Log2 of number of components per integrated function

14 Moore s s Law cont d Source: Moore, ISSCC 23 Micro transductors 8, CMOS Basics 4

15 Trend: Cost per function Price of a transistor Micro transductors 8, CMOS Basics 5

16 Trend: Performance MIPS,, Pentium 4 proc 386 Pentium proc TIPS Source: Moore, ISSCC 23 Micro transductors 8, CMOS Basics 6

17 Trend: Power Source: Moore, ISSCC 23 Micro transductors 8, CMOS Basics 7

18 Trend: Power Density Sun s Surface Power Density (W/cm2) Nuclear Reactor Hot Plate Rocket Nozzle P4 Pentium Prescott Pentium Year Source: Moore, ISSCC 23 Micro transductors 8, CMOS Basics 8

19 Dimensions mm cm µm mnm Source: Spektrum der Wissenschaften 65 nm -Transistor Source: Intel Micro transductors 8, CMOS Basics 9

20 The CMOS Technology CMOS = Complementary Metal Oxide Semiconductor Currently most applied logic family Main advantages: Low Power (compared to other technologies) Very good scalability High Speed High packaging density Micro transductors 8, CMOS Basics 2

21 Main Idea: The CMOS Technique cont d Combination of two complementary switches Switches are metal-oxide-semiconductor field-effect transistors (MOSFET) Realization of logic gates (AND, NAND, ) Metal Oxide Semiconductor : Physical structure of MOSFETs (metal gate electrode, oxide insulator, semiconductor material) Today: polysilicon instead of metal Micro transductors 8, CMOS Basics 2

22 What is a transistor? S D Source: Rabaey, Digital Integrated Circuits,995 Micro transductors 8, CMOS Basics 22

23 PMOS and NMOS Source: Rabaey, Digital Integrated Circuits,995 Micro transductors 8, CMOS Basics 23

24 NMOS-Transistor Source Gate Drain Polysilicon SiO 2 n+ p n+ bulk Si S G Body is (commonly) tied to ground ( Body is (commonly) tied to VDD Source: Rabaey, Digital Integrated Circuits,995 Micro transductors 8, CMOS Basics 24

25 NMOS-Transistor (2) polysilicon gate W Gate-width t ox L n+ n+ p-type body SiO 2 gate oxide (good insulator, e ox = 3.9 t ox thickness of oxide layer Gate length Source: Rabaey, Digital Integrated Circuits,995 Micro transductors 8, CMOS Basics 25

26 Cross section of NMOS and PMOS Source: Weste, CMOS VLSI design,23 Micro transductors 8, CMOS Basics 26

27 Layout Mask Set Transistors and wires are defined by masks Cross-section taken along dashed line A Y GND V DD substrate tap nmos transistor pmos transistor well tap Micro transductors 8, CMOS Basics 27

28 I-V V Curves of NMOS I ds V ds V gs Source: Weste, CMOS VLSI design,23 Micro transductors 8, CMOS Basics 28

29 Threshold Voltage V th Transistor characteristic If: Gate-Source -Voltage V gs higher than V th Channel under Gate Current between Drain and Source Source V gs > V th Gate I ds Drain If: V gs lower than V th No current Micro transductors 8, CMOS Basics 29

30 Logic Gates Task (e.g. calculation) Transfer into Logic Gates (Synthesis) Gate characteristics: Delay Power dissipation more... Gates realized by transistors Transistors determine gate characteristics Y = A+B Micro transductors 8, CMOS Basics 3

31 Example: Half-adder adder How do you add the two bits A and B in binary logic? A B Result Carry Sum So called Half-adder: In (A ) In2 (B ) AND XOR Micro transductors 8, CMOS Basics 3

32 CMOS Scheme VDD (supply voltage) PUN Pull-up Network PDN Pull-down Network GND (ground) Micro transductors 8, CMOS Basics 32

33 CMOS Inverter VDD IN (GND) (VDD) OUT (VDD) (GND) GND Micro transductors 8, CMOS Basics 33

34 Transistor as Water-tap tap Micro transductors 8, CMOS Basics 34

35 Transistor as Water-tap tap cont d Voltage (Volt, V) Water pressure (bar) Current (Ampere, A) Water quantity (liter) Volt Volt Volt Volt Volt Volt Volt? Volt Volt Volt? Volt Volt Volt Volt Source: Timmernann, 27 Micro transductors 8, CMOS Basics 35

36 NAND Gate Pull-up Network In In2 PUN PDN Out OFF ON ON OFF ON OFF ON ON Pull-down Network Micro transductors 8, CMOS Basics 36

37 NOR Gate Pull-up Network In In2 PUN PDN Out OFF ON OFF ON OFF ON Pull-down Network ON OFF Micro transductors 8, CMOS Basics 37

38 AND and OR Gate AND In In2 Out AND Out NAND NAND INV OR In In2 Out OR Out NOR NOR INV Micro transductors 8, CMOS Basics 38

39 Delay Definitions V in V out V in input waveform 5% Propagation delay t p t phl t plh t V out output waveform 5% 9% signal slopes t f % t r t Micro transductors 8, CMOS Basics 39

40 RC-Delay Model Simple but effective delay model Use equivalent circuits for MOS transistors Ideal switch Transistor capacitances ON resistance ( = when transistor is conducting (=ON) channel between Drain to Source acts as resistor) Delay t ~ R*C Micro transductors 8, CMOS Basics 4

41 MOSFET capacitances Any two conductors separated by an insulator create a capacitor MOS capacitances have three origins: The basic MOS structure The channel charge The pn-junctions depletion regions Gate Source CGS CGB CGD Drain CSB CDB Bulk Bulk Micro transductors 8, CMOS Basics 4

42 RC-Delay Model: Inverter Rising Slope C P,gate R P,DS C N,gate X C out Micro transductors 8, CMOS Basics 42

43 RC-Delay Model: Inverter Falling Slope C P,gate X C out R N,DS C N,gate Micro transductors 8, CMOS Basics 43

44 RC-Delay Model: Inverter cont d Where does C out come from? Input capacitance (= gate capacitances) of following gate Diffusion capacitances (Drain-Bulk) of PMOS- and NMOS transistors C P,gate C P,DB C N,DB C out C N,gate Micro transductors 8, CMOS Basics 44

45 RC-Delay Model: Width Gate width W can be changed by Designer (L, T ox, V DD are fixed) Capacitance proportional to width: C ~ W Resistance inversely proportional to width: R ~ / W Resistance of NMOS approx. two times smaller than PMOS with same width: N N P N P N C P = 2*C N! Micro transductors 8, CMOS Basics 45

46 RC-Delay Model: Fanout fanout f = C C : load in Micro transductors 8, CMOS Basics 46

47 RC-Delay Model: Rising Slope C P,gate W P =2n XW N =n C N,gate C P,DB RNDS,, RPDS, WN C load C N,DB R = = 2R W C = C W, C = C W NDB, N Ngate, N C = C W, C = C W P, DB P P, gate P P ( ) t = RC = R C + C + C ( C W C W f C ) ( 2 3 ) ( f ) PDS, NDB, PDB, load 2R = + + W P N P in 2R = nc + nc + nfc 2n = 3+ R C Micro transductors 8, CMOS Basics 47

48 RC-Delay Model: Falling Slope C P,gate X W P =2n C N,gate W N =n C P,DB RNDS,, RPDS, WN C load C N,DB R = = 2R W C = C W, C = C W NDB, N Ngate, N C = C W, C = C W P, DB P P, gate P P N ( ) t = RC = R C + C + C ( C W C W f C ) ( 2nC nc 3nfC ) ( f ) NDS, PDB, NDB, load R = + + W R = n + + = 3+ R C P N in Micro transductors 8, CMOS Basics 48

49 RC-Delay Model: Examples Delay of an Inverter with a fanout of 64: t= 3+ f RC ( ) = 3( + 64) R C = 95 RC Micro transductors 8, CMOS Basics 49

50 RC-Delay Model: Examples cont d Chain of Inverters with C load = 92 C and C in =3 C C in =3 C INV INV2 INV3 C load =92 C C f = = 64 = f f f load, chain chain INV 3 INV 2 INV Cin, chain C C C C C C = = C, C, C, C, C, C, load, INV 3 load, INV 2 load, INV load, chain in, INV 3 in, INV 2 in INV 3 in INV 2 in INV in INV 3 in INV 2 in chain t = t + t + t chain INV INV 2 INV 3 [ ] = 3 RC ( + f ) + ( + f ) + ( + f ) INV INV 2 INV 3 Micro transductors 8, CMOS Basics 5

51 RC-Delay Model: Examples cont d Chain of Inverters with C load = 92 C and C in =3 C C in =3 C INV INV2 INV3 C load =92 C f =, f =, f = 64 t INV INV 2 INV 3 chain,,64 = 27 R C f = 4, f = 4, f = 4 t INV INV 2 INV 3 chain4,4,4 = 45 R C Chain of Inverters: Optimum result (for speed) at equal fanout! Micro transductors 8, CMOS Basics 5

52 Chains of Inverters Micro transductors 8, CMOS Basics 52

53 Sizing Increasing Width Resistance get down Increasing current Decreasing delay BUT Capacitance increase too Internal capacitances increase + Output load of previous gates increases Micro transductors 8, CMOS Basics 53

54 Sizing for Performance Sizing (W ) auch interne Kapazität (Cdb,PMOS, Cdb,NMOS) = > größer Effekt von Sizing sinkt! Source: Irwan, PSU, 2 Micro transductors 8, CMOS Basics 54

55 Alpha Power Law Model t t rise fall k' CL VDD = (W / L) (V V ) PMOS NMOS DD DD TH,PMOS k' CL VDD = (W / L) (V V ) TH,NMOS α α In W PMOS W NMOS Out C L Micro transductors 8, CMOS Basics 55

56 Logical Effort Source: Harris 5 Micro transductors 8, CMOS Basics 56

57 Logical Effort (LE) cont d gain= Cout * LE = f * LE C in C in,firstgate Cout LE of the whole circuit: fanout of the whole circuit: f sum = C out / C in,firstgate LE sum allgates = i LE i gain of the whole circuit: gain sum = LE sum * f sum Micro transductors 8, CMOS Basics 57

58 Logical Effort (LE) cont d gain sum = gain sum for every gate (starting at the last gate): C out, gate = gain gate LE C gate in, gate Micro transductors 8, CMOS Basics 58

EE586 VLSI Design. Partha Pande School of EECS Washington State University

EE586 VLSI Design. Partha Pande School of EECS Washington State University EE586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 1 (Introduction) Why is designing digital ICs different today than it was before? Will it change in

More information

Introduction to ICs and Transistor Fundamentals

Introduction to ICs and Transistor Fundamentals Introduction to ICs and Transistor Fundamentals A Brief History 1958: First integrated circuit Flip-flop using two transistors Built by Jack Kilby at Texas Instruments 2003 Intel Pentium 4 mprocessor (55

More information

CMPEN 411 VLSI Digital Circuits. Lecture 01: Introduction

CMPEN 411 VLSI Digital Circuits. Lecture 01: Introduction CMPEN 411 VLSI Digital Circuits Kyusun Choi Lecture 01: Introduction CMPEN 411 Course Website link at: http://www.cse.psu.edu/~kyusun/teach/teach.html [Adapted from Rabaey s Digital Integrated Circuits,

More information

E40M. MOS Transistors, CMOS Logic Circuits, and Cheap, Powerful Computers. M. Horowitz, J. Plummer, R. Howe 1

E40M. MOS Transistors, CMOS Logic Circuits, and Cheap, Powerful Computers. M. Horowitz, J. Plummer, R. Howe 1 E40M MOS Transistors, CMOS Logic Circuits, and Cheap, Powerful Computers M. Horowitz, J. Plummer, R. Howe 1 Reading Chapter 4 in the reader For more details look at A&L 5.1 Digital Signals (goes in much

More information

CMPEN 411. Spring Lecture 01: Introduction

CMPEN 411. Spring Lecture 01: Introduction Kyusun Choi CMPEN 411 VLSI Digital Circuits Spring 2009 Lecture 01: Introduction Course Website: http://www.cse.psu.edu/~kyusun/class/cmpen411/09s/index.html [Adapted from Rabaey s Digital Integrated Circuits,

More information

EITF35: Introduction to Structured VLSI Design

EITF35: Introduction to Structured VLSI Design EITF35: Introduction to Structured VLSI Design Part 1.1.2: Introduction (Digital VLSI Systems) Liang Liu liang.liu@eit.lth.se 1 Outline Why Digital? History & Roadmap Device Technology & Platforms System

More information

Elettronica T moduli I e II

Elettronica T moduli I e II Elettronica T moduli I e II Docenti: Massimo Lanzoni, Igor Loi Massimo.lanzoni@unibo.it igor.loi@unibo.it A.A. 2015/2016 Scheduling MOD 1 (Prof. Loi) Weeks 39,40,41,42, 43,44» MOS transistors» Digital

More information

Lab. Course Goals. Topics. What is VLSI design? What is an integrated circuit? VLSI Design Cycle. VLSI Design Automation

Lab. Course Goals. Topics. What is VLSI design? What is an integrated circuit? VLSI Design Cycle. VLSI Design Automation Course Goals Lab Understand key components in VLSI designs Become familiar with design tools (Cadence) Understand design flows Understand behavioral, structural, and physical specifications Be able to

More information

ECE484 VLSI Digital Circuits Fall Lecture 01: Introduction

ECE484 VLSI Digital Circuits Fall Lecture 01: Introduction ECE484 VLSI Digital Circuits Fall 2017 Lecture 01: Introduction Adapted from slides provided by Mary Jane Irwin. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] CSE477 L01 Introduction.1

More information

Microelettronica. J. M. Rabaey, "Digital integrated circuits: a design perspective" EE141 Microelettronica

Microelettronica. J. M. Rabaey, Digital integrated circuits: a design perspective EE141 Microelettronica Microelettronica J. M. Rabaey, "Digital integrated circuits: a design perspective" Introduction Why is designing digital ICs different today than it was before? Will it change in future? The First Computer

More information

ECE 261: Full Custom VLSI Design

ECE 261: Full Custom VLSI Design ECE 261: Full Custom VLSI Design Prof. James Morizio Dept. Electrical and Computer Engineering Hudson Hall Ph: 201-7759 E-mail: jmorizio@ee.duke.edu URL: http://www.ee.duke.edu/~jmorizio Course URL: http://www.ee.duke.edu/~jmorizio/ece261/261.html

More information

What is this class all about?

What is this class all about? -Fall 2004 Digital Integrated Circuits Instructor: Borivoje Nikolić TuTh 3:30-5 247 Cory EECS141 1 What is this class all about? Introduction to digital integrated circuits. CMOS devices and manufacturing

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 8 Design Rules Adib Abrishamifar EE Department IUST Contents Design Rules CMOS Process Layers Intra-Layer Design Rules Via s and Contacts Select Layer Example Cell

More information

What is this class all about?

What is this class all about? EE141-Fall 2007 Digital Integrated Circuits Instructor: Elad Alon TuTh 3:30-5pm 155 Donner 1 1 What is this class all about? Introduction to digital integrated circuit design engineering Will describe

More information

INEL-6080 VLSI Systems Design

INEL-6080 VLSI Systems Design INEL-6080 VLSI Systems Design ooooooo Prof. Manuel Jiménez Lecture 1 Introduction Computational Devices The idea of developing computing devices is certainly not new A few chronological examples show the

More information

ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS)

ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS) ESE 570 Cadence Lab Assignment 2: Introduction to Spectre, Manual Layout Drawing and Post Layout Simulation (PLS) Objective Part A: To become acquainted with Spectre (or HSpice) by simulating an inverter,

More information

CAD for VLSI. Debdeep Mukhopadhyay IIT Madras

CAD for VLSI. Debdeep Mukhopadhyay IIT Madras CAD for VLSI Debdeep Mukhopadhyay IIT Madras Tentative Syllabus Overall perspective of VLSI Design MOS switch and CMOS, MOS based logic design, the CMOS logic styles, Pass Transistors Introduction to Verilog

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 CPE/EE 427, CPE 527 VLSI Design I L0 Department of Electrical and Computer Engineering University of Alabama in Huntsville What is this course all about? Introduction to digital integrated circuits. CMOS

More information

Introduction. Summary. Why computer architecture? Technology trends Cost issues

Introduction. Summary. Why computer architecture? Technology trends Cost issues Introduction 1 Summary Why computer architecture? Technology trends Cost issues 2 1 Computer architecture? Computer Architecture refers to the attributes of a system visible to a programmer (that have

More information

ECE520 VLSI Design. Lecture 1: Introduction to VLSI Technology. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 1: Introduction to VLSI Technology. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 1: Introduction to VLSI Technology Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Course Objectives

More information

ECE 637 Integrated VLSI Circuits. Introduction. Introduction EE141

ECE 637 Integrated VLSI Circuits. Introduction. Introduction EE141 ECE 637 Integrated VLSI Circuits Introduction EE141 1 Introduction Course Details Instructor Mohab Anis; manis@vlsi.uwaterloo.ca Text Digital Integrated Circuits, Jan Rabaey, Prentice Hall, 2 nd edition

More information

Digital Integrated Circuits (83-313) Lecture 2: Technology and Standard Cell Layout

Digital Integrated Circuits (83-313) Lecture 2: Technology and Standard Cell Layout Digital Integrated Circuits (83-313) Lecture 2: Technology and Standard Cell Layout Semester B, 2016-17 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 26 March 2017 Disclaimer: This course

More information

Curtis Nelson. Walla Walla College. Introduction CMOS VLSI Design

Curtis Nelson. Walla Walla College. Introduction CMOS VLSI Design Curtis Nelson Walla Walla College Slide 1 Course organization History of the integrated circuit Trends in the semiconductor industry System design versus custom chip design Top down design Bottom-up implementation

More information

What is this class all about?

What is this class all about? EE141-Fall 2012 Digital Integrated Circuits Instructor: Elad Alon TuTh 11-12:30pm 247 Cory 1 What is this class all about? Introduction to digital integrated circuit design engineering Will describe models

More information

Computer Architecture (TT 2012)

Computer Architecture (TT 2012) Computer Architecture (TT 2012) The Register Transfer Level Daniel Kroening Oxford University, Computer Science Department Version 1.0, 2011 Outline Reminders Gates Implementations of Gates Latches, Flip-flops

More information

3. Implementing Logic in CMOS

3. Implementing Logic in CMOS 3. Implementing Logic in CMOS 3. Implementing Logic in CMOS Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 27 September, 27 ECE Department,

More information

More Course Information

More Course Information More Course Information Labs and lectures are both important Labs: cover more on hands-on design/tool/flow issues Lectures: important in terms of basic concepts and fundamentals Do well in labs Do well

More information

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends EE4 - Spring 008 Advanced Digital Integrated Circuits Lecture : Scaling Trends Announcements No office hour next Monday Extra office hours Tuesday and Thursday -3pm CMOS Scaling Rules Voltage, V / α tox/α

More information

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag FABRICATION OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Overview of CMOS Fabrication Processes The CMOS Fabrication Process Flow Design Rules EE 432 VLSI Modeling and Design 2 CMOS Fabrication

More information

ELE 455/555 Computer System Engineering. Section 1 Review and Foundations Class 3 Technology

ELE 455/555 Computer System Engineering. Section 1 Review and Foundations Class 3 Technology ELE 455/555 Computer System Engineering Section 1 Review and Foundations Class 3 MOSFETs MOSFET Terminology Metal Oxide Semiconductor Field Effect Transistor 4 terminal device Source, Gate, Drain, Body

More information

Integrated circuits and fabrication

Integrated circuits and fabrication Integrated circuits and fabrication Motivation So far we have discussed about the various devices that are the heartbeat of core electronics. This modules aims at giving an overview of how these solid

More information

EE241 - Spring 2004 Advanced Digital Integrated Circuits

EE241 - Spring 2004 Advanced Digital Integrated Circuits EE24 - Spring 2004 Advanced Digital Integrated Circuits Borivoje Nikolić Lecture 2 Impact of Scaling Class Material Last lecture Class scope, organization Today s lecture Impact of scaling 2 Major Roadblocks.

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 23-1 guntzel@inf.ufsc.br Semiconductor Memory Classification

More information

Sense Amplifiers 6 T Cell. M PC is the precharge transistor whose purpose is to force the latch to operate at the unstable point.

Sense Amplifiers 6 T Cell. M PC is the precharge transistor whose purpose is to force the latch to operate at the unstable point. Announcements (Crude) notes for switching speed example from lecture last week posted. Schedule Final Project demo with TAs. Written project report to include written evaluation section. Send me suggestions

More information

C Program Adventures. From C code to motion

C Program Adventures. From C code to motion C Program Adventures From C code to motion ECE 100 Prof. Erdal Oruklu From C code to motion C Code Motion x=5; if (x!=y) { z=0; } else { z=1; } 1 Compilation of C code Virtual machine program Program download

More information

Jin-Fu Li. Department of Electrical Engineering. Jhongli, Taiwan

Jin-Fu Li. Department of Electrical Engineering. Jhongli, Taiwan EEA001 VLSI Design Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering National Central University Jhongli, Taiwan Contents Syllabus Introduction to CMOS Circuits MOS Transistor

More information

CMOS Process Flow. Layout CAD Tools

CMOS Process Flow. Layout CAD Tools CMOS Process Flow See supplementary power point file for animated CMOS process flow (see class ece410 website and/or* http://www.multimedia.vt.edu/ee5545/): This file should be viewed as a slide show It

More information

EE141- Spring 2007 Introduction to Digital Integrated Circuits

EE141- Spring 2007 Introduction to Digital Integrated Circuits - Spring 2007 Introduction to Digital Integrated Circuits Tu-Th 5pm-6:30pm 150 GSPP 1 What is this class about? Introduction to digital integrated circuits.» CMOS devices and manufacturing technology.

More information

Digital Fundamentals. Integrated Circuit Technologies

Digital Fundamentals. Integrated Circuit Technologies Digital Fundamentals Integrated Circuit Technologies 1 Objectives Determine the noise margin of a device from data sheet parameters Calculate the power dissipation of a device Explain how propagation delay

More information

CS310 Embedded Computer Systems. Maeng

CS310 Embedded Computer Systems. Maeng 1 INTRODUCTION (PART II) Maeng Three key embedded system technologies 2 Technology A manner of accomplishing a task, especially using technical processes, methods, or knowledge Three key technologies for

More information

10. Interconnects in CMOS Technology

10. Interconnects in CMOS Technology 10. Interconnects in CMOS Technology 1 10. Interconnects in CMOS Technology Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 October

More information

EE141- Spring 2002 Introduction to Digital Integrated Circuits. What is this class about?

EE141- Spring 2002 Introduction to Digital Integrated Circuits. What is this class about? - Spring 2002 Introduction to Digital Integrated Circuits Tu-Th 9:30-am 203 McLaughlin What is this class about? Introduction to digital integrated circuits.» CMOS devices and manufacturing technology.

More information

Lecture #1. Teach you how to make sure your circuit works Do you want your transistor to be the one that screws up a 1 billion transistor chip?

Lecture #1. Teach you how to make sure your circuit works Do you want your transistor to be the one that screws up a 1 billion transistor chip? Instructor: Jan Rabaey EECS141 1 Introduction to digital integrated circuit design engineering Will describe models and key concepts needed to be a good digital IC designer Models allow us to reason about

More information

Miniaturization process technology

Miniaturization process technology Miniaturization process technology 1 st lecture: introduction Prof. Yosi Shacham-Diamand Fall 2004 1 The First Computer The Babbage Difference Engine (1832) 2,500 parts 6 years to build Cost: 17,470 2

More information

Power dissipation! The VLSI Interconnect Challenge. Interconnect is the crux of the problem. Interconnect is the crux of the problem.

Power dissipation! The VLSI Interconnect Challenge. Interconnect is the crux of the problem. Interconnect is the crux of the problem. The VLSI Interconnect Challenge Avinoam Kolodny Electrical Engineering Department Technion Israel Institute of Technology VLSI Challenges System complexity Performance Tolerance to digital noise and faults

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Digital Integrated Circuits A Design Perspective Jan M. Rabaey Outline (approximate) Introduction and Motivation The VLSI Design Process Details of the MOS Transistor Device Fabrication Design Rules CMOS

More information

EE141- Spring 2004 Introduction to Digital Integrated Circuits. What is this class about?

EE141- Spring 2004 Introduction to Digital Integrated Circuits. What is this class about? - Spring 2004 Introduction to Digital Integrated Circuits Tu-Th am-2:30pm 203 McLaughlin What is this class about? Introduction to digital integrated circuits.» CMOS devices and manufacturing technology.

More information

Based on slides/material by. Topic 7-4. Memory and Array Circuits. Outline. Semiconductor Memory Classification

Based on slides/material by. Topic 7-4. Memory and Array Circuits. Outline. Semiconductor Memory Classification Based on slides/material by Topic 7 Memory and Array Circuits K. Masselos http://cas.ee.ic.ac.uk/~kostas J. Rabaey http://bwrc.eecs.berkeley.edu/classes/icbook/instructors.html Digital Integrated Circuits:

More information

Introduction 1. GENERAL TRENDS. 1. The technology scale down DEEP SUBMICRON CMOS DESIGN

Introduction 1. GENERAL TRENDS. 1. The technology scale down DEEP SUBMICRON CMOS DESIGN 1 Introduction The evolution of integrated circuit (IC) fabrication techniques is a unique fact in the history of modern industry. The improvements in terms of speed, density and cost have kept constant

More information

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends EE24 - Spring 2008 Advanced Digital Integrated Circuits Lecture 2: Scaling Trends Announcements No office hour next Monday Extra office hours Tuesday and Thursday 2-3pm 2 CMOS Scaling Rules Voltage, V

More information

Memory Design I. Array-Structured Memory Architecture. Professor Chris H. Kim. Dept. of ECE.

Memory Design I. Array-Structured Memory Architecture. Professor Chris H. Kim. Dept. of ECE. Memory Design I Professor Chris H. Kim University of Minnesota Dept. of ECE chriskim@ece.umn.edu Array-Structured Memory Architecture 2 1 Semiconductor Memory Classification Read-Write Wi Memory Non-Volatile

More information

Sketch A Transistor-level Schematic Of A Cmos 3-input Xor Gate

Sketch A Transistor-level Schematic Of A Cmos 3-input Xor Gate Sketch A Transistor-level Schematic Of A Cmos 3-input Xor Gate DE09 DIGITALS ELECTRONICS 3 (For Mod-m Counter, we need N flip-flops (High speeds are possible in ECL because the transistors are used in

More information

EE3032 Introduction to VLSI Design

EE3032 Introduction to VLSI Design EE3032 Introduction to VLSI Design Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering National Central University Jhongli, Taiwan Contents Syllabus Introduction to CMOS

More information

Lecture 20: Package, Power, and I/O

Lecture 20: Package, Power, and I/O Introduction to CMOS VLSI Design Lecture 20: Package, Power, and I/O David Harris Harvey Mudd College Spring 2004 1 Outline Packaging Power Distribution I/O Synchronization Slide 2 2 Packages Package functions

More information

Concurrency & Parallelism, 10 mi

Concurrency & Parallelism, 10 mi The Beauty and Joy of Computing Lecture #7 Concurrency Instructor : Sean Morris Quest (first exam) in 5 days!! In this room! Concurrency & Parallelism, 10 mi up Intra-computer Today s lecture Multiple

More information

DESIGN AND SIMULATION OF 1 BIT ARITHMETIC LOGIC UNIT DESIGN USING PASS-TRANSISTOR LOGIC FAMILIES

DESIGN AND SIMULATION OF 1 BIT ARITHMETIC LOGIC UNIT DESIGN USING PASS-TRANSISTOR LOGIC FAMILIES Volume 120 No. 6 2018, 4453-4466 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ DESIGN AND SIMULATION OF 1 BIT ARITHMETIC LOGIC UNIT DESIGN USING PASS-TRANSISTOR

More information

Integrated Circuit Fabrication

Integrated Circuit Fabrication Integrated Circuit Fabrication Professor Dean Neikirk Department of Electrical and Computer Engineering The University of Texas at Austin world wide web: http://weewave.mer.utexas.edu Integrated circuits

More information

ENEE 359a Digital VLSI Design

ENEE 359a Digital VLSI Design SLIDE 1 ENEE 359a Digital VLSI Design Course : Transistors to Systems Prof. blj@eng.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally

More information

Lecture contents. Electronics and Microelectronics AE4B34EM. Labs - content. Lecture contents. Labs - content

Lecture contents. Electronics and Microelectronics AE4B34EM. Labs - content. Lecture contents. Labs - content Lecture contents Electronics and Microelectronics AE4B34EM Lectures: Labs: Jiří Jakovenko jakovenk@fel.cvut.cz Vladimír Janíček janicev@fel.cvut.cz Historical overview of electronics and microelectronics,

More information

Circuits. L3: Fabrication and Layout -1 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L3: Fabrication and Layout -1 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE60: CMOS Analog Circuits L: Fabrication and Layout - (8.8.0) B. Mazhari Dept. of EE, IIT Kanpur Suppose we have a Silicon wafer which is P-type and we wish to create a region within it which is N-type

More information

VLSI Design Automation

VLSI Design Automation 943/U0220 & #901/60010 VLSI Design Automation 張耀文 Yao-Wen Chang ywchang@cc.ee.ntu.edu.tw http://cc.ee.ntu.edu.tw/~ywchang Graduate Institute of Electronics Engineering Department of Electrical Engineering

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics F2 Active power devices»mos»bjt» IGBT, TRIAC» Safe Operating Area» Thermal analysis 23/05/2014-1 ATLCE - F2-2014 DDC 2014 DDC

More information

Process technology and introduction to physical

Process technology and introduction to physical Neuromorphic Engineering II Lab 3, Spring 2014 1 Lab 3 March 10, 2014 Process technology and introduction to physical layout Today you will start to learn to use the Virtuoso layout editor XL which is

More information

Design rule illustrations for the AMI C5N process can be found at:

Design rule illustrations for the AMI C5N process can be found at: Cadence Tutorial B: Layout, DRC, Extraction, and LVS Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group. Revised by C Young & Waqar A Qureshi -FS08 Document Contents Introduction

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino Electronic Eng. Master Degree Analog and Telecommunication Electronics F2 Active power devices»mos»bjt» IGBT, TRIAC» Safe Operating Area» Thermal analysis AY 2015-16 26/04/2016-1

More information

Digital Electronics. CHAPTER THIRTY TWO. Semiconductor Read-Only Memories

Digital Electronics. CHAPTER THIRTY TWO. Semiconductor Read-Only Memories Digital Electronics. CHAPTER THIRTY TWO Semiconductor Read-Only Memories Introduction Diode circuits, BJT circuits, and MOSFET circuits are used to provide memory semiconductor circuits consisting of both

More information

ELCT 503: Semiconductors. Fall Lecture 01: Introduction

ELCT 503: Semiconductors. Fall Lecture 01: Introduction ELCT503 Semiconductors Fall 2014 Lecture 01: Introduction Dr. Hassan Mostafa د. حسن مصطفى hmostafa@aucegypt.edu Course Outline Course objectives This course is basically about the major microelectronics

More information

Lay ay ut Design g R ules

Lay ay ut Design g R ules HPTER 5: Layout esign Rules Introduction ny circuit physical mask layout must conform to a set of geometric constraints or rules called as Layout esign rules before it can be manufactured using particular

More information

A Review Paper on Reconfigurable Techniques to Improve Critical Parameters of SRAM

A Review Paper on Reconfigurable Techniques to Improve Critical Parameters of SRAM IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 09, 2016 ISSN (online): 2321-0613 A Review Paper on Reconfigurable Techniques to Improve Critical Parameters of SRAM Yogit

More information

Spiral 2-8. Cell Layout

Spiral 2-8. Cell Layout 2-8.1 Spiral 2-8 Cell Layout 2-8.2 Learning Outcomes I understand how a digital circuit is composed of layers of materials forming transistors and wires I understand how each layer is expressed as geometric

More information

Memory Design I. Semiconductor Memory Classification. Read-Write Memories (RWM) Memory Scaling Trend. Memory Scaling Trend

Memory Design I. Semiconductor Memory Classification. Read-Write Memories (RWM) Memory Scaling Trend. Memory Scaling Trend Array-Structured Memory Architecture Memory Design I Professor hris H. Kim University of Minnesota Dept. of EE chriskim@ece.umn.edu 2 Semiconductor Memory lassification Read-Write Memory Non-Volatile Read-Write

More information

The Beauty and Joy of Computing

The Beauty and Joy of Computing The Beauty and Joy of Computing Lecture #8 : Concurrency UC Berkeley Teaching Assistant Yaniv Rabbit Assaf Friendship Paradox On average, your friends are more popular than you. The average Facebook user

More information

Lecture 4a. CMOS Fabrication, Layout and Simulation. R. Saleh Dept. of ECE University of British Columbia

Lecture 4a. CMOS Fabrication, Layout and Simulation. R. Saleh Dept. of ECE University of British Columbia Lecture 4a CMOS Fabrication, Layout and Simulation R. Saleh Dept. of ECE University of British Columbia res@ece.ubc.ca 1 Fabrication Fabrication is the process used to create devices and wires. Transistors

More information

+1 (479)

+1 (479) Memory Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575-6043 yrpeng@uark.edu Memory Arrays Memory Arrays Random Access Memory Serial

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Practical Information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Practical Information EE24 - Spring 2000 Advanced Digital Integrated Circuits Tu-Th 2:00 3:30pm 203 McLaughlin Practical Information Instructor: Borivoje Nikolic 570 Cory Hall, 3-9297, bora@eecs.berkeley.edu Office hours: TuTh

More information

ΔΙΑΛΕΞΗ 5: FPGA Programming Technologies (aka: how to connect/disconnect wires/gates)

ΔΙΑΛΕΞΗ 5: FPGA Programming Technologies (aka: how to connect/disconnect wires/gates) ΗΜΥ 408 ΨΗΦΙΑΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΜΕ FPGAs Χειμερινό Εξάμηνο 2018 ΔΙΑΛΕΞΗ 5: FPGA Programming Technologies (aka: how to connect/disconnect wires/gates) (ack: Jurriaan Schmitz, Semiconductor Components) ΧΑΡΗΣ

More information

Magnetic core memory (1951) cm 2 ( bit)

Magnetic core memory (1951) cm 2 ( bit) Magnetic core memory (1951) 16 16 cm 2 (128 128 bit) Semiconductor Memory Classification Read-Write Memory Non-Volatile Read-Write Memory Read-Only Memory Random Access Non-Random Access EPROM E 2 PROM

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Integrated Circuits EE141 Fall 2005 Tu & Th 11-12:30 203 McLaughlin What is This Class About? Introduction to Digital Integrated Circuits Introduction: Issues in digital design CMOS devices and

More information

FPGA Power Management and Modeling Techniques

FPGA Power Management and Modeling Techniques FPGA Power Management and Modeling Techniques WP-01044-2.0 White Paper This white paper discusses the major challenges associated with accurately predicting power consumption in FPGAs, namely, obtaining

More information

Design and Technology Trends

Design and Technology Trends Lecture 1 Design and Technology Trends R. Saleh Dept. of ECE University of British Columbia res@ece.ubc.ca 1 Recently Designed Chips Itanium chip (Intel), 2B tx, 700mm 2, 8 layer 65nm CMOS (4 processors)

More information

EITF20: Computer Architecture Part1.1.1: Introduction

EITF20: Computer Architecture Part1.1.1: Introduction EITF20: Computer Architecture Part1.1.1: Introduction Liang Liu liang.liu@eit.lth.se 1 Course Factor Computer Architecture (7.5HP) http://www.eit.lth.se/kurs/eitf20 EIT s Course Service Desk (studerandeexpedition)

More information

Introduction to CMOS VLSI Design. Semiconductor Memory Harris and Weste, Chapter October 2018

Introduction to CMOS VLSI Design. Semiconductor Memory Harris and Weste, Chapter October 2018 Introduction to CMOS VLSI Design Semiconductor Memory Harris and Weste, Chapter 12 25 October 2018 J. J. Nahas and P. M. Kogge Modified from slides by Jay Brockman 2008 [Including slides from Harris &

More information

ESD Protection Structure with Inductor-Triggered SCR for RF Applications in 65-nm CMOS Process

ESD Protection Structure with Inductor-Triggered SCR for RF Applications in 65-nm CMOS Process ESD Protection Structure with Inductor-Triggered SCR for RF Applications in 65-nm CMOS Process Chun-Yu Lin 1, Li-Wei Chu 1, Ming-Dou Ker 1, Ming-Hsiang Song 2, Chewn-Pu Jou 2, Tse-Hua Lu 2, Jen-Chou Tseng

More information

Introduction to Computer Science. What is Computer Science?

Introduction to Computer Science. What is Computer Science? Introduction to Computer Science CS A101 What is Computer Science? First, some misconceptions. Misconception 1: I can put together my own PC, am good with Windows, and can surf the net with ease, so I

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2019 HW5: Delay and Layout Sunday, February 17th Due: Friday,

More information

Introduction to laboratory exercises in Digital IC Design.

Introduction to laboratory exercises in Digital IC Design. Introduction to laboratory exercises in Digital IC Design. A digital ASIC typically consists of four parts: Controller, datapath, memory, and I/O. The digital ASIC below, which is an FFT/IFFT co-processor,

More information

CHAPTER 12 ARRAY SUBSYSTEMS [ ] MANJARI S. KULKARNI

CHAPTER 12 ARRAY SUBSYSTEMS [ ] MANJARI S. KULKARNI CHAPTER 2 ARRAY SUBSYSTEMS [2.4-2.9] MANJARI S. KULKARNI OVERVIEW Array classification Non volatile memory Design and Layout Read-Only Memory (ROM) Pseudo nmos and NAND ROMs Programmable ROMS PROMS, EPROMs,

More information

CMOS Logic Circuit Design Link( リンク ): センター教官講義ノートの下 CMOS 論理回路設計

CMOS Logic Circuit Design   Link( リンク ): センター教官講義ノートの下 CMOS 論理回路設計 CMOS Logic Circuit Design http://www.rcns.hiroshima-u.ac.jp Link( リンク ): センター教官講義ノートの下 CMOS 論理回路設計 Memory Circuits (Part 1) Overview of Memory Types Memory with Address-Based Access Principle of Data Access

More information

TABLE OF CONTENTS 1.0 PURPOSE INTRODUCTION ESD CHECKS THROUGHOUT IC DESIGN FLOW... 2

TABLE OF CONTENTS 1.0 PURPOSE INTRODUCTION ESD CHECKS THROUGHOUT IC DESIGN FLOW... 2 TABLE OF CONTENTS 1.0 PURPOSE... 1 2.0 INTRODUCTION... 1 3.0 ESD CHECKS THROUGHOUT IC DESIGN FLOW... 2 3.1 PRODUCT DEFINITION PHASE... 3 3.2 CHIP ARCHITECTURE PHASE... 4 3.3 MODULE AND FULL IC DESIGN PHASE...

More information

EE141-Fall 2007 Digital Integrated Circuits. ROM and Flash. Announcements. Read-Only Memory Cells. Class Material. Semiconductor Memory Classification

EE141-Fall 2007 Digital Integrated Circuits. ROM and Flash. Announcements. Read-Only Memory Cells. Class Material. Semiconductor Memory Classification EE4-Fall 2007 igital Integrated Circuits Lecture 29 ROM, Flash, and RAM ROM and Flash 4 4 Announcements Final ec. 20 th Room TBA Final review sessions: Mon. ec. 7 th 3:30pm, 550 Cory Tues. ec. 7 th 3:30pm,

More information

IMPLEMENTATION OF LOW POWER AREA EFFICIENT ALU WITH LOW POWER FULL ADDER USING MICROWIND DSCH3

IMPLEMENTATION OF LOW POWER AREA EFFICIENT ALU WITH LOW POWER FULL ADDER USING MICROWIND DSCH3 IMPLEMENTATION OF LOW POWER AREA EFFICIENT ALU WITH LOW POWER FULL ADDER USING MICROWIND DSCH3 Ritafaria D 1, Thallapalli Saibaba 2 Assistant Professor, CJITS, Janagoan, T.S, India Abstract In this paper

More information

Dynamic CMOS Logic Gate

Dynamic CMOS Logic Gate Dynamic CMOS Logic Gate In dynamic CMOS logic a single clock can be used to accomplish both the precharge and evaluation operations When is low, PMOS pre-charge transistor Mp charges Vout to Vdd, since

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Storage Project3 Digital Logic - Storage: Recap - Direct - Mapping - Fully Associated - 2-way Associated - Cache Friendly Code Rutgers University Liu

More information

ECE 261: CMOS VLSI Design Methodologies

ECE 261: CMOS VLSI Design Methodologies ECE 261: CMOS VLSI Design Methodologies Prof. Krishnendu (Krish) Chakrabarty Dept. Electrical and Computer Engineering Room 2513 CIEMAS Ph: 660-5244 E-mail: krish@ee.duke.edu URL: http://www.ee.duke.edu/~krish

More information

Huh? Lecture 01 Introduction to CSE You can learn about good routes to run if you!re visiting Chicago...

Huh? Lecture 01 Introduction to CSE You can learn about good routes to run if you!re visiting Chicago... 1 Huh? 2 All of the following are magazines that are regularly delivered to the Niemier household. Lecture 01 Introduction to CSE 30321 3 4 You can learn about good routes to run if you!re visiting Chicago...

More information

Low Voltage Bandgap References and High PSRR Mechanism

Low Voltage Bandgap References and High PSRR Mechanism Low Voltage Bandgap References and High PSRR Mechanism Vahe Arakelyan 2nd year Master Student Synopsys Armenia Educational Department, State Engineering University of Armenia Moscow March 21-24, 2011 Outline

More information

VLSI Test Technology and Reliability (ET4076)

VLSI Test Technology and Reliability (ET4076) VLSI Test Technology and Reliability (ET4076) Lecture 4(part 2) Testability Measurements (Chapter 6) Said Hamdioui Computer Engineering Lab Delft University of Technology 2009-2010 1 Previous lecture What

More information

11 Patent Number: 5,519,242 Avery 45) Date of Patent: May 21, 1996

11 Patent Number: 5,519,242 Avery 45) Date of Patent: May 21, 1996 United States Patent (19) I I USOO5519242A 11 Patent Number: 5,519,242 Avery 45) Date of Patent: May 21, 1996 54 ELECTROSTATIC DISCHARGE 5,357,126 10/1994 Jimenez... 257/173 PROTECTION CIRCUIT FOR A NMOS

More information

VLSI Design Automation

VLSI Design Automation 943/U0220 & #901/60010 VLSI Design Automation 張耀文 Yao-Wen Chang ywchang@cc.ee.ntu.edu.tw http://cc.ee.ntu.edu.tw/~ywchang Graduate Institute of Electronics Engineering Department of Electrical Engineering

More information

VLSI Design Automation. Maurizio Palesi

VLSI Design Automation. Maurizio Palesi VLSI Design Automation 1 Outline Technology trends VLSI Design flow (an overview) 2 Outline Technology trends VLSI Design flow (an overview) 3 IC Products Processors CPU, DSP, Controllers Memory chips

More information