Miniaturization process technology

Size: px
Start display at page:

Download "Miniaturization process technology"

Transcription

1 Miniaturization process technology 1 st lecture: introduction Prof. Yosi Shacham-Diamand Fall

2 The First Computer The Babbage Difference Engine (1832) 2,500 parts 6 years to build Cost: 17,470 2

3 ENIAC First electronic computer (1946) Built by John W. Mauchly (computer architecture) and J. Presper Eckert (circuit engineering), Moore School of Electrical Engineering, University of Pennsylvania. Formed Eckert & Marchly Computer Co. and built the 2nd computer, Univac. Went bankrupt in 1950 and sold to Remington Rand (now defunct). IBM built 401 in 1952 (1st commercial computer) and John von Neumann invented controversial concept of interchangeable data and programs. 3

4 4 Vacuum Tubes in First Computer

5 Solid State Electronics (Details in following slides) 1906 Semiconductors used to detect radio signals (Pickard, ATT) 1912 Semiconductors found to rectify AC (Pickard, ATT) 1925 FET concept patent by J. Lilienfeld (next slide) (AMRAD Co., US#1,745,175, #1,900,018, #1,877,140), also 1935 by O. Heil (British #439,457 ) 1943 Germanium crystals used for Radar demodulation Transistor Invented (ATT ignores Lilienfeld) Bardeen, Brattain and Schockley, ATT, Nobel Prize, Crude FETs made (Field Effect Transistor) 1958 Integrated Circuit : Kilby (TI) & Noyce(F.S.) Legally EQUAL inventors, Noyce dies 1990, Kilby - Noble Prize in MOS-FET manufactured and patented Khang and Atatta (ATT) CMOS logic invented (replaced resistors with transistors) Wanlass and Sah (General Micro Electronics -company lasted only 4 years) Self-Aligned MOSFET Transistor 5 Robert Bower (Hughes Research Labs).

6 Lilienfeld FET Transistor (1930)

7 The First Transistor John Bardeen and Walter Brattain at Bell Laboratories constructed the first solid-state transistor. This PNP point-contact germanium transistor operated with a power gain of 18 on Dec. 23, With their 7 manager, William Shockley, they won the Nobel Prize in 1956.

8 8 Historical Perspective

9 The First Transistor Product 9 The first transistor radio was a joint project of the Regency Co. and Texas Instruments. TI built the transistors; Regency built the radio. On October 18, 1954, the Regency TR1 was put on the market. It was a scant five inches high and used four germanium transistors. It was discontinued in 1955.

10 10 The First Transistor Product In Japan, a tiny company had other ideas. Tsushin Kogyo was close to manufacturing its first radios when it heard that an American company had beaten them to market. But they persevered and made a radio, the TR-52. Sony When Regency quit producing their radio, the Japanese company immediately started shipping their radio to the U.S. One immediate problem was that Americans couldn t pronounce their name. The founders, Ibuka and Morita, thought of using a Latin word sonus meaning "sound." Akio Morita knew some English, and made a simple variation that became their name from then on: SONY

11 1956 -William Shockley had gone as far as he was going to go at Bell Labs. His patent for an FET had been disallowed when Lilienfeld s early patents were discovered. Shockley moved to Palo Alto and founded Shockley Semiconductor Laboratory had officially opened for business. A genius he may have been, but a good manager he was not.. 11

12 the "traitorous eight resigned. The next day they signed a contract for $1.3 million with a New York firm called Fairchild Camera and Instruments which was involved with missiles and satellite systems. The eight men were Julius Blank, Victor Grinich,, Jean Hoerni,, Gene Kleiner,, Jay Last, Gordon Moore, Robert Noyce,, and Sheldon Roberts. Three years later Moore and Noyce left to found Intel. 12

13 Invention of the Integrated Circuit In July, 1958, Jack Kilby built a working model, and on February 6, Texas Instruments filed a patent. Their first "Solid Circuit" the size of a pencil point, was shown off for the first time in March.

14 Invention of the Integrated Circuit Robert Noyce was working at the small Fairchild Semiconductor startup company. Knowing that TI had already filed a patent on something similar, Fairchild wrote out a highly detailed application, hoping that it wouldn't infringe on TI 's similar device.

15 Invention of the Integrated Circuit All that detail paid off. In April, 1961, the patent office awarded the first patent for an integrated circuit to Robert Noyce while Kilby's application was still being analyzed. Today, both men are acknowledged as having independently conceived of the idea.

16 Jack Kilby s First Integrated Circuit (An oscillator circuit on germanium substrate) 16 Photo courtesy of Texas Instruments, Inc.

17 Kilby was awarded the Nobel Prize in 2000 for his Integrated Circuit work. Ed Noyce died in 1990, and hence was ineligible for the Prize (given only to living persons). 17

18 Early Integrated Circuits Bipolar logic 1960 s ECL 3-input Gate/SRAM Motorola

19 Preparation of Silicon Wafers 1. Crystal Growth Polysilicon Crucible Seed crystal 6. Edge Rounding Heater 7. Lapping 2. Single Crystal Ingot 8. Wafer Etching 3. Crystal Trimming and Diameter Grind 4. Flat Grinding 9. Polishing Slurry Polishing head Polishing table 5. Wafer Slicing 10. Wafer Inspection 19

20 Stages of IC Fabrication 1. Wafer Preparation includes crystal growing, rounding, slicing and polishing. Single crystal silicon Wafers sliced from ingot 4. Assembly and Packaging: The wafer is cut Scribe line along scribe lines to separate each die. A single die 2. Wafer Fabrication includes cleaning, layering, patterning, etching and doping. Metal connections are made and the chip is encapsulated. Assembly Packaging 3. Test/Sort includes probing, testing and sorting of each die on the wafer. Defective die 5. Final Test ensures IC passes electrical and environmental testing. 20 Figure 1.6

21 IC Production in Wafer Fab 21 Photo courtesy of Advanced Micro Devices

22 22

23 23 IC Minimum Feature Size

24 24 IC Minimum Feature Size

25 25 Ultimate Small Scale Structure

26 Junction Transistor

27 Alloy Junction Transistor 27

28 First Planar Transistor

29 Basic Bipolar Paired Transistors Bias Resistor NPN Bipolar Device Bias Resistor 29

30 Modern Integrated Circuit Section 30

31 SEM Cross-Section of Integrated Circuit Wiring Layers Wiring Layers Wiring Layers Vias through Passivating Layers 31 CMOS Devices

32 Historical Dates of IC Technology Transistor Bardeen et al. (Bell Labs) in 1947 Bipolar transistor Schockley et al. in 1949 First bipolar digital logic gate Harris in 1956 First monolithic IC Jack Kilby in 1959 First commercial IC logic gates Fairchild 1960 TTL Circuits 1962 into the 1990 s ECL Circuits 1974 into the 1980 s 32

33 MOSFET transistor - Lilienfeld (Canada) in 1925 and Heil (England) in 1935 CMOS Invented in 1960 s, but plagued with manufacturing problems for 20 years. PMOS Limited use in calculators in 1960s NMOS Limited use in special applications in 1970s CMOS in 1980 s Contamination problems solved and CMOS became IC standard technology except for high speed BiCMOS, Silicon-Germanium, Stressed Silicon 2000 IBM: SOI, Copper Wiring, Low-k Dielectrics 33 MOS Technology Dates

34 Moore s Law In 1965, Gordon Moore predicted that the number of transistors that can be integrated on a die would double every 18 to 14 months (i.e., grow exponentially with time). Amazingly visionary million transistor/chip barrier was crossed in the 1980 s transistors, 1 MHz clock (Intel 4004) Million transistors (Ultra Sparc III) 42 Million, 2 GHz clock (Intel P4) Million transistor (HP PA-8500) 34

35 Intel 4004 Microprocessor MHz, 5V 5k Components 35

36 Intel Pentium (III) Microprocessor MHz, 3.3V 3M Components 36

37 37 Pentium III Layout

38 Intel Pentium (IV) Microprocessor GHz, 1.8V 42M Components 38

39 Moore s Law in Microprocessors Transistors on lead microprocessors double every 2 years Transistors (MT) Average 2X every 1.96 years Pentium proc Year Courtesy, Intel

40 Evolution in DRAM Chip Capacity human memory human DNA 4X growth every 3 years! 64,000,000 16,000, µm 4,000, µm Kbit capacity/chip ,000 book 4, µm µm page 16, µm 64, , µm 1,000, µm µm 0.13 µm encyclopedia 2 hrs CD audio 30 sec HDTV Year

41 Die Size Growth Die size grows by 14% to satisfy Moore s Law 100 Die size (mm) P6 Pentium proc ~7% growth per year ~2X growth in 10 years Year Courtesy, Intel

42 10000 Clock Frequency Lead microprocessors frequency doubles every 2 years X every 2 years Frequency (Mhz) P6 Pentium proc Year Courtesy, Intel

43 Power Dissipation Lead Microprocessors power continues to increase Power (Watts) Mainframe Chips (liquid cooled) P6 Pentium proc Year 43 Power Removal is Immediate Problem (2003) Courtesy, Intel

44 Power Density Power Density (W/cm2) Hot Plate Rocket Nozzle Nuclear Reactor P6 Pentium proc Year Power density too high to keep junctions at low temp 44 Courtesy, Intel

45 Design Productivity Trends 10, ,000 Complexity Logic Transistor per Chip (M) 1, Logic Tr./Chip Tr./Staff Month. x x x x x x x x 58%/Yr. compounded Complexity growth rate 21%/Yr. compound Productivity growth rate 10,000 1, Productivity (K) Trans./Staff - Mo Complexity outpaces design productivity 45 Courtesy, ITRS Roadmap

46 Technology Directions: SIA Roadmap Yearbb Feature size (nm) Mtrans/cm Chip size (mm 2 ) Signal pins/chip Clock rate (MHz) Wiring levels Power supply (V) High-perf power (W) Battery power (W) For Cost-Performance MPU (L1 on-chip SRAM cache; 32KB/1999 doubling every two years) 46

47 Further Scaling will be possible if.. The key is in: or Extending existing CMOS technology Devising new nanotechnology New methods of computing New architectures 47

ECE484 VLSI Digital Circuits Fall Lecture 01: Introduction

ECE484 VLSI Digital Circuits Fall Lecture 01: Introduction ECE484 VLSI Digital Circuits Fall 2017 Lecture 01: Introduction Adapted from slides provided by Mary Jane Irwin. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] CSE477 L01 Introduction.1

More information

CMPEN 411. Spring Lecture 01: Introduction

CMPEN 411. Spring Lecture 01: Introduction Kyusun Choi CMPEN 411 VLSI Digital Circuits Spring 2009 Lecture 01: Introduction Course Website: http://www.cse.psu.edu/~kyusun/class/cmpen411/09s/index.html [Adapted from Rabaey s Digital Integrated Circuits,

More information

CMPEN 411 VLSI Digital Circuits. Lecture 01: Introduction

CMPEN 411 VLSI Digital Circuits. Lecture 01: Introduction CMPEN 411 VLSI Digital Circuits Kyusun Choi Lecture 01: Introduction CMPEN 411 Course Website link at: http://www.cse.psu.edu/~kyusun/teach/teach.html [Adapted from Rabaey s Digital Integrated Circuits,

More information

Microelettronica. J. M. Rabaey, "Digital integrated circuits: a design perspective" EE141 Microelettronica

Microelettronica. J. M. Rabaey, Digital integrated circuits: a design perspective EE141 Microelettronica Microelettronica J. M. Rabaey, "Digital integrated circuits: a design perspective" Introduction Why is designing digital ICs different today than it was before? Will it change in future? The First Computer

More information

EE586 VLSI Design. Partha Pande School of EECS Washington State University

EE586 VLSI Design. Partha Pande School of EECS Washington State University EE586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 1 (Introduction) Why is designing digital ICs different today than it was before? Will it change in

More information

CAD for VLSI. Debdeep Mukhopadhyay IIT Madras

CAD for VLSI. Debdeep Mukhopadhyay IIT Madras CAD for VLSI Debdeep Mukhopadhyay IIT Madras Tentative Syllabus Overall perspective of VLSI Design MOS switch and CMOS, MOS based logic design, the CMOS logic styles, Pass Transistors Introduction to Verilog

More information

Elettronica T moduli I e II

Elettronica T moduli I e II Elettronica T moduli I e II Docenti: Massimo Lanzoni, Igor Loi Massimo.lanzoni@unibo.it igor.loi@unibo.it A.A. 2015/2016 Scheduling MOD 1 (Prof. Loi) Weeks 39,40,41,42, 43,44» MOS transistors» Digital

More information

What is this class all about?

What is this class all about? -Fall 2004 Digital Integrated Circuits Instructor: Borivoje Nikolić TuTh 3:30-5 247 Cory EECS141 1 What is this class all about? Introduction to digital integrated circuits. CMOS devices and manufacturing

More information

What is this class all about?

What is this class all about? EE141-Fall 2012 Digital Integrated Circuits Instructor: Elad Alon TuTh 11-12:30pm 247 Cory 1 What is this class all about? Introduction to digital integrated circuit design engineering Will describe models

More information

INEL-6080 VLSI Systems Design

INEL-6080 VLSI Systems Design INEL-6080 VLSI Systems Design ooooooo Prof. Manuel Jiménez Lecture 1 Introduction Computational Devices The idea of developing computing devices is certainly not new A few chronological examples show the

More information

What is this class all about?

What is this class all about? EE141-Fall 2007 Digital Integrated Circuits Instructor: Elad Alon TuTh 3:30-5pm 155 Donner 1 1 What is this class all about? Introduction to digital integrated circuit design engineering Will describe

More information

ECE 261: Full Custom VLSI Design

ECE 261: Full Custom VLSI Design ECE 261: Full Custom VLSI Design Prof. James Morizio Dept. Electrical and Computer Engineering Hudson Hall Ph: 201-7759 E-mail: jmorizio@ee.duke.edu URL: http://www.ee.duke.edu/~jmorizio Course URL: http://www.ee.duke.edu/~jmorizio/ece261/261.html

More information

Lecture contents. Electronics and Microelectronics AE4B34EM. Labs - content. Lecture contents. Labs - content

Lecture contents. Electronics and Microelectronics AE4B34EM. Labs - content. Lecture contents. Labs - content Lecture contents Electronics and Microelectronics AE4B34EM Lectures: Labs: Jiří Jakovenko jakovenk@fel.cvut.cz Vladimír Janíček janicev@fel.cvut.cz Historical overview of electronics and microelectronics,

More information

EE141- Spring 2007 Introduction to Digital Integrated Circuits

EE141- Spring 2007 Introduction to Digital Integrated Circuits - Spring 2007 Introduction to Digital Integrated Circuits Tu-Th 5pm-6:30pm 150 GSPP 1 What is this class about? Introduction to digital integrated circuits.» CMOS devices and manufacturing technology.

More information

Lecture #1. Teach you how to make sure your circuit works Do you want your transistor to be the one that screws up a 1 billion transistor chip?

Lecture #1. Teach you how to make sure your circuit works Do you want your transistor to be the one that screws up a 1 billion transistor chip? Instructor: Jan Rabaey EECS141 1 Introduction to digital integrated circuit design engineering Will describe models and key concepts needed to be a good digital IC designer Models allow us to reason about

More information

Jin-Fu Li. Department of Electrical Engineering. Jhongli, Taiwan

Jin-Fu Li. Department of Electrical Engineering. Jhongli, Taiwan EEA001 VLSI Design Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering National Central University Jhongli, Taiwan Contents Syllabus Introduction to CMOS Circuits MOS Transistor

More information

EE141- Spring 2004 Introduction to Digital Integrated Circuits. What is this class about?

EE141- Spring 2004 Introduction to Digital Integrated Circuits. What is this class about? - Spring 2004 Introduction to Digital Integrated Circuits Tu-Th am-2:30pm 203 McLaughlin What is this class about? Introduction to digital integrated circuits.» CMOS devices and manufacturing technology.

More information

EE141- Spring 2002 Introduction to Digital Integrated Circuits. What is this class about?

EE141- Spring 2002 Introduction to Digital Integrated Circuits. What is this class about? - Spring 2002 Introduction to Digital Integrated Circuits Tu-Th 9:30-am 203 McLaughlin What is this class about? Introduction to digital integrated circuits.» CMOS devices and manufacturing technology.

More information

Introduction to ICs and Transistor Fundamentals

Introduction to ICs and Transistor Fundamentals Introduction to ICs and Transistor Fundamentals A Brief History 1958: First integrated circuit Flip-flop using two transistors Built by Jack Kilby at Texas Instruments 2003 Intel Pentium 4 mprocessor (55

More information

EITF35: Introduction to Structured VLSI Design

EITF35: Introduction to Structured VLSI Design EITF35: Introduction to Structured VLSI Design Part 1.1.2: Introduction (Digital VLSI Systems) Liang Liu liang.liu@eit.lth.se 1 Outline Why Digital? History & Roadmap Device Technology & Platforms System

More information

ECE 637 Integrated VLSI Circuits. Introduction. Introduction EE141

ECE 637 Integrated VLSI Circuits. Introduction. Introduction EE141 ECE 637 Integrated VLSI Circuits Introduction EE141 1 Introduction Course Details Instructor Mohab Anis; manis@vlsi.uwaterloo.ca Text Digital Integrated Circuits, Jan Rabaey, Prentice Hall, 2 nd edition

More information

More Course Information

More Course Information More Course Information Labs and lectures are both important Labs: cover more on hands-on design/tool/flow issues Lectures: important in terms of basic concepts and fundamentals Do well in labs Do well

More information

E40M. MOS Transistors, CMOS Logic Circuits, and Cheap, Powerful Computers. M. Horowitz, J. Plummer, R. Howe 1

E40M. MOS Transistors, CMOS Logic Circuits, and Cheap, Powerful Computers. M. Horowitz, J. Plummer, R. Howe 1 E40M MOS Transistors, CMOS Logic Circuits, and Cheap, Powerful Computers M. Horowitz, J. Plummer, R. Howe 1 Reading Chapter 4 in the reader For more details look at A&L 5.1 Digital Signals (goes in much

More information

High-Performance System Design. Prof. Vojin G. Oklobdzija

High-Performance System Design. Prof. Vojin G. Oklobdzija High-Performance System Design Prof. Vojin G. Oklobdzija Overview of the course Requirements: Knowledge of CMOS digital circuits Basic knowledge of analog circuits Knowledge of Logic Design Textbook: High-Performance

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 CPE/EE 427, CPE 527 VLSI Design I L0 Department of Electrical and Computer Engineering University of Alabama in Huntsville What is this course all about? Introduction to digital integrated circuits. CMOS

More information

Digital Integrated Circuits

Digital Integrated Circuits Digital Integrated Circuits EE141 Fall 2005 Tu & Th 11-12:30 203 McLaughlin What is This Class About? Introduction to Digital Integrated Circuits Introduction: Issues in digital design CMOS devices and

More information

THE GENERATIONS OF COMPUTER

THE GENERATIONS OF COMPUTER THE GENERATIONS OF COMPUTER FIRST GENERATION (1951-1958) VACUUM TUBE 1. Vacuum tubes as their main logic elements 2. Punch Cards to input and externally stored data 3. Rotating magnetic drums for internal

More information

CHAPTER 1 Introduction

CHAPTER 1 Introduction CHAPTER 1 Introduction 1.1 Overview 1 1.2 The Main Components of a Computer 3 1.3 An Example System: Wading through the Jargon 4 1.4 Standards Organizations 13 1.5 Historical Development 14 1.5.1 Generation

More information

EE241 - Spring 2004 Advanced Digital Integrated Circuits

EE241 - Spring 2004 Advanced Digital Integrated Circuits EE24 - Spring 2004 Advanced Digital Integrated Circuits Borivoje Nikolić Lecture 2 Impact of Scaling Class Material Last lecture Class scope, organization Today s lecture Impact of scaling 2 Major Roadblocks.

More information

ELCT 503: Semiconductors. Fall Lecture 01: Introduction

ELCT 503: Semiconductors. Fall Lecture 01: Introduction ELCT503 Semiconductors Fall 2014 Lecture 01: Introduction Dr. Hassan Mostafa د. حسن مصطفى hmostafa@aucegypt.edu Course Outline Course objectives This course is basically about the major microelectronics

More information

CHAPTER 1 Introduction

CHAPTER 1 Introduction CHAPTER 1 Introduction 1.1 Overview 1 1.2 The Main Components of a Computer 3 1.3 An Example System: Wading through the Jargon 4 1.4 Standards Organizations 15 1.5 Historical Development 16 1.5.1 Generation

More information

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 2 Computer Evolution and Performance

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 2 Computer Evolution and Performance William Stallings Computer Organization and Architecture 8 th Edition Chapter 2 Computer Evolution and Performance Analytical Engine ENIAC - background Electronic Numerical Integrator And Computer Eckert

More information

Computer & Microprocessor Architecture HCA103

Computer & Microprocessor Architecture HCA103 Computer & Microprocessor Architecture HCA103 Computer Evolution and Performance UTM-RHH Slide Set 2 1 ENIAC - Background Electronic Numerical Integrator And Computer Eckert and Mauchly University of Pennsylvania

More information

ENIAC - background. ENIAC - details. Structure of von Nuemann machine. von Neumann/Turing Computer Architecture

ENIAC - background. ENIAC - details. Structure of von Nuemann machine. von Neumann/Turing Computer Architecture 168 420 Computer Architecture Chapter 2 Computer Evolution and Performance ENIAC - background Electronic Numerical Integrator And Computer Eckert and Mauchly University of Pennsylvania Trajectory tables

More information

ECE520 VLSI Design. Lecture 1: Introduction to VLSI Technology. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 1: Introduction to VLSI Technology. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 1: Introduction to VLSI Technology Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Course Objectives

More information

CS Computer Architecture Spring Lecture 01: Introduction

CS Computer Architecture Spring Lecture 01: Introduction CS 35101 Computer Architecture Spring 2008 Lecture 01: Introduction Created by Shannon Steinfadt Indicates slide was adapted from :Kevin Schaffer*, Mary Jane Irwinº, and from Computer Organization and

More information

Evolution of the Computer

Evolution of the Computer Evolution of the Computer Janaka Harambearachchi (Engineer/Systems Development) Zeroth Generation- Mechanical 1. Blaise Pascal -1642 Mechanical calculator only perform + - 2. Von Leibiniz -1672 Mechanical

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Digital Integrated Circuits A Design Perspective Jan M. Rabaey Outline (approximate) Introduction and Motivation The VLSI Design Process Details of the MOS Transistor Device Fabrication Design Rules CMOS

More information

Micro transductors 08

Micro transductors 08 Micro transductors 8 CMOS Basics Dr.-Ing. Frank Sill Department of Electrical Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CEP: 327-, Belo Horizonte (MG), Brazil franksill@ufmg.br

More information

Chapter 2. Perkembangan Komputer

Chapter 2. Perkembangan Komputer Chapter 2 Perkembangan Komputer 1 ENIAC - background Electronic Numerical Integrator And Computer Eckert and Mauchly University of Pennsylvania Trajectory tables for weapons Started 1943 Finished 1946

More information

Introduction. Summary. Why computer architecture? Technology trends Cost issues

Introduction. Summary. Why computer architecture? Technology trends Cost issues Introduction 1 Summary Why computer architecture? Technology trends Cost issues 2 1 Computer architecture? Computer Architecture refers to the attributes of a system visible to a programmer (that have

More information

Curtis Nelson. Walla Walla College. Introduction CMOS VLSI Design

Curtis Nelson. Walla Walla College. Introduction CMOS VLSI Design Curtis Nelson Walla Walla College Slide 1 Course organization History of the integrated circuit Trends in the semiconductor industry System design versus custom chip design Top down design Bottom-up implementation

More information

Introduction to Computer Science. What is Computer Science?

Introduction to Computer Science. What is Computer Science? Introduction to Computer Science CS A101 What is Computer Science? First, some misconceptions. Misconception 1: I can put together my own PC, am good with Windows, and can surf the net with ease, so I

More information

Fundamental concepts of Information Technology

Fundamental concepts of Information Technology Fundamental concepts of Information Technology A brief history, the Neumann architecture, the language of computers Csernyi Gábor Department of English Linguistics University of Debrecen Csernyi Gábor

More information

CS 3410: Computer System Organization and Programming

CS 3410: Computer System Organization and Programming CS 3410: Computer System Organization and Programming Anne Bracy Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy,

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Practical Information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Practical Information EE24 - Spring 2000 Advanced Digital Integrated Circuits Tu-Th 2:00 3:30pm 203 McLaughlin Practical Information Instructor: Borivoje Nikolic 570 Cory Hall, 3-9297, bora@eecs.berkeley.edu Office hours: TuTh

More information

C Program Adventures. From C code to motion

C Program Adventures. From C code to motion C Program Adventures From C code to motion ECE 100 Prof. Erdal Oruklu From C code to motion C Code Motion x=5; if (x!=y) { z=0; } else { z=1; } 1 Compilation of C code Virtual machine program Program download

More information

Integrated Circuit Fabrication

Integrated Circuit Fabrication Integrated Circuit Fabrication Professor Dean Neikirk Department of Electrical and Computer Engineering The University of Texas at Austin world wide web: http://weewave.mer.utexas.edu Integrated circuits

More information

Computer Organization CS 206T

Computer Organization CS 206T Computer Organization CS 206T Topics Introduction Historical Background Structure & Function System Interconnection 2 1. Introduction Why study computer organization and architecture? Design better programs,

More information

Introduction 1. GENERAL TRENDS. 1. The technology scale down DEEP SUBMICRON CMOS DESIGN

Introduction 1. GENERAL TRENDS. 1. The technology scale down DEEP SUBMICRON CMOS DESIGN 1 Introduction The evolution of integrated circuit (IC) fabrication techniques is a unique fact in the history of modern industry. The improvements in terms of speed, density and cost have kept constant

More information

Birth of Microprocessor

Birth of Microprocessor Chapter 3 Birth of Microprocessor In the history of the progress of semiconductor technology, the development of microprocessor in 1971 is such a big event that is paralleled with the invention of transistor

More information

Fundamentals of Computer Design

Fundamentals of Computer Design CS359: Computer Architecture Fundamentals of Computer Design Yanyan Shen Department of Computer Science and Engineering 1 Defining Computer Architecture Agenda Introduction Classes of Computers 1.3 Defining

More information

EITF20: Computer Architecture Part1.1.1: Introduction

EITF20: Computer Architecture Part1.1.1: Introduction EITF20: Computer Architecture Part1.1.1: Introduction Liang Liu liang.liu@eit.lth.se 1 Course Factor Computer Architecture (7.5HP) http://www.eit.lth.se/kurs/eitf20 EIT s Course Service Desk (studerandeexpedition)

More information

Il pensiero parallelo: Una storia di innovazione aziendale

Il pensiero parallelo: Una storia di innovazione aziendale Il pensiero parallelo: Una storia di innovazione aziendale Maria Teresa Gatti Scienzazienda Trento, 8 Maggio 2006 Overview ST is one of the largest Worldwide Semiconductors provider, with products ranging

More information

VLSI Design Automation. Maurizio Palesi

VLSI Design Automation. Maurizio Palesi VLSI Design Automation 1 Outline Technology trends VLSI Design flow (an overview) 2 Outline Technology trends VLSI Design flow (an overview) 3 IC Products Processors CPU, DSP, Controllers Memory chips

More information

EE 8351 Digital Logic Circuits Ms. J.Jayaudhaya, ASP/EEE

EE 8351 Digital Logic Circuits Ms. J.Jayaudhaya, ASP/EEE EE 8351 Digital Logic Circuits Ms. J.Jayaudhaya, ASP/EEE Numbering Systems Types Of Numbers Natural Numbers The number 0 and any number obtained by repeatedly adding a count of 1 to 0 Negative Numbers

More information

CMPSCI 201: Architecture and Assembly Language

CMPSCI 201: Architecture and Assembly Language CMPSCI 201: Architecture and Assembly Language Deepak Ganesan Computer Science Department 1-1 Course Administration Instructor: Deepak Ganesan (dganesan@cs.umass.edu) 250 CS Building Office Hrs: T 10:45-12:15,

More information

Computers in Engineering COMP 208. A Brief History. Mechanical Calculators. A Historic Perspective Michael A. Hawker

Computers in Engineering COMP 208. A Brief History. Mechanical Calculators. A Historic Perspective Michael A. Hawker Computers in Engineering COMP 208 A Historic Perspective Michael A. Hawker Sept 4th, 2007 Computers in Engineering 1 A Brief History Abacus considered first mechanical computing device Used beads and rods

More information

Computers in Engineering COMP 208

Computers in Engineering COMP 208 Computers in Engineering COMP 208 A Historic Perspective Michael A. Hawker Sept 4th, 2007 Computers in Engineering 1 A Brief History Abacus considered first mechanical computing device Used beads and rods

More information

EE3032 Introduction to VLSI Design

EE3032 Introduction to VLSI Design EE3032 Introduction to VLSI Design Jin-Fu Li Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering National Central University Jhongli, Taiwan Contents Syllabus Introduction to CMOS

More information

Computer Architecture

Computer Architecture Informatics 3 Computer Architecture Dr. Vijay Nagarajan Institute for Computing Systems Architecture, School of Informatics University of Edinburgh (thanks to Prof. Nigel Topham) General Information Instructor

More information

CIT 668: System Architecture

CIT 668: System Architecture CIT 668: System Architecture Computer Systems Architecture I 1. System Components 2. Processor 3. Memory 4. Storage 5. Network 6. Operating System Topics Images courtesy of Majd F. Sakr or from Wikipedia

More information

6.884 Complex Digital Systems Spring 2005

6.884 Complex Digital Systems Spring 2005 6.884 Complex Digital Systems Spring 2005 Lecturers: Arvind, Krste Asanovic TA: Christopher Batten Website: http://csg.csail.mit.edu/6.884/ L01 Introduction 1 Modern Digital Systems Engineering Personal

More information

Unit 4: Emerging Technologies. A History of Personal Computing by Mrs. Ogletree

Unit 4: Emerging Technologies. A History of Personal Computing by Mrs. Ogletree Unit 4: Emerging Technologies A History of Personal Computing by Mrs. Ogletree EVOLUTION OF TECHNOLOGY Technology has been constantly changing COMPUTER HISTORY Computers have been around for a very, very,

More information

Integrated circuits and fabrication

Integrated circuits and fabrication Integrated circuits and fabrication Motivation So far we have discussed about the various devices that are the heartbeat of core electronics. This modules aims at giving an overview of how these solid

More information

History of Computers. What Is A Computer? Egyptian Numbers. Ancient Tools for Computation. Introduction to Computers

History of Computers. What Is A Computer? Egyptian Numbers. Ancient Tools for Computation. Introduction to Computers What Is A Computer? History of Computers Introduction to Computers Adapted from slides by Prof. Polly Huang and Prof. KM Chao (National Taiwan University) com put er Pronunciation: kâm-'pyü-ter Function:

More information

Computer Architecture!

Computer Architecture! Informatics 3 Computer Architecture! Dr. Vijay Nagarajan and Prof. Nigel Topham! Institute for Computing Systems Architecture, School of Informatics! University of Edinburgh! General Information! Instructors

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 1 Computer Abstractions and Technology (Ch.1) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations

More information

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends

Announcements. Advanced Digital Integrated Circuits. No office hour next Monday. Lecture 2: Scaling Trends EE4 - Spring 008 Advanced Digital Integrated Circuits Lecture : Scaling Trends Announcements No office hour next Monday Extra office hours Tuesday and Thursday -3pm CMOS Scaling Rules Voltage, V / α tox/α

More information

HISTORY OF MICROPROCESSORS

HISTORY OF MICROPROCESSORS HISTORY OF MICROPROCESSORS CONTENTS Introduction 4-Bit Microprocessors 8-Bit Microprocessors 16-Bit Microprocessors 1 32-Bit Microprocessors 64-Bit Microprocessors 2 INTRODUCTION Fairchild Semiconductors

More information

Computer Organization. 8 th Edition. Chapter 2 p Computer Evolution and Performance

Computer Organization. 8 th Edition. Chapter 2 p Computer Evolution and Performance William Stallings Computer Organization and Architecture 8 th Edition Chapter 2 p Computer Evolution and Performance ENIAC - background Electronic Numerical Integrator And Computer Eckert and Mauchly University

More information

HISTORY OF COMPUTERS HISTORY OF COMPUTERS. Mesleki İngilizce - Technical English. Punch Card. Digital Data. II Prof. Dr. Nizamettin AYDIN.

HISTORY OF COMPUTERS HISTORY OF COMPUTERS. Mesleki İngilizce - Technical English. Punch Card. Digital Data. II Prof. Dr. Nizamettin AYDIN. Mesleki İngilizce - Technical English II Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr Notes: In the slides, texts enclosed by curly parenthesis, { }, are examples. texts enclosed by square parenthesis,

More information

HW Trends and Architectures

HW Trends and Architectures Pavel Tvrdík, Jiří Kašpar (ČVUT FIT) HW Trends and Architectures MI-POA, 2011, Lecture 1 1/29 HW Trends and Architectures prof. Ing. Pavel Tvrdík CSc. Ing. Jiří Kašpar Department of Computer Systems Faculty

More information

COMPUTER HISTORY Compiled by Charles Kim Howard University

COMPUTER HISTORY Compiled by Charles Kim Howard University EECE416 :Microcomputer Fundamentals and Design ( Microcomputer & Microprocessor ) COMPUTER HISTORY Compiled by Charles Kim Howard University 1 Computers Everywhere Everywhere PC, VCR, DVD,Toys Phones,

More information

Collaborate to Innovate FinFET Design Ecosystem Challenges and Solutions

Collaborate to Innovate FinFET Design Ecosystem Challenges and Solutions 2013 TSMC, Ltd Collaborate to Innovate FinFET Design Ecosystem Challenges and Solutions 2 Agenda Lifestyle Trends Drive Product Requirements Concurrent Technology and Design Development FinFET Design Challenges

More information

Evolution of Computers & Microprocessors. Dr. Cahit Karakuş

Evolution of Computers & Microprocessors. Dr. Cahit Karakuş Evolution of Computers & Microprocessors Dr. Cahit Karakuş Evolution of Computers First generation (1939-1954) - vacuum tube IBM 650, 1954 Evolution of Computers Second generation (1954-1959) - transistor

More information

Concurrency & Parallelism, 10 mi

Concurrency & Parallelism, 10 mi The Beauty and Joy of Computing Lecture #7 Concurrency Instructor : Sean Morris Quest (first exam) in 5 days!! In this room! Concurrency & Parallelism, 10 mi up Intra-computer Today s lecture Multiple

More information

EECE416 :Microcomputer Fundamentals and Design ( Microcomputer & Microprocessor ) COMPUTER HISTORY. Computers and Microprocessors

EECE416 :Microcomputer Fundamentals and Design ( Microcomputer & Microprocessor ) COMPUTER HISTORY. Computers and Microprocessors EECE416 :Microcomputer Fundamentals and Design ( Microcomputer & Microprocessor ) COMPUTER HISTORY 1 Computers and Microprocessors Everywhere PC, VCR, Toys, etc Hardware and Software Evolution of up First

More information

COMS 1003 Fall Introduction to Computer Programming in C. History & Computer Organization. September 15 th

COMS 1003 Fall Introduction to Computer Programming in C. History & Computer Organization. September 15 th COMS 1003 Fall 2005 Introduction to Computer Programming in C History & Computer Organization September 15 th What's Ahead Some computer history Introduction to major players in the development of hardware

More information

IT 252 Computer Organization and Architecture. Introduction. Chia-Chi Teng

IT 252 Computer Organization and Architecture. Introduction. Chia-Chi Teng IT 252 Computer Organization and Architecture Introduction Chia-Chi Teng What is computer architecture about? Computer architecture is the study of building computer systems. IT 252 is roughly split into

More information

History of Computing. Slides from NYU and Georgia Tech

History of Computing. Slides from NYU and Georgia Tech History of Computing Slides from NYU and Georgia Tech Early Computational Devices (Chinese) Abacus 2700 2300 BC Used for performing arithmetic operations Early Computational Devices Napier s Bones, 1617

More information

What Comes Next? Reconfigurable Nanoelectronics and Defect Tolerance. Technology Shifts. Size Matters. Ops/sec/$

What Comes Next? Reconfigurable Nanoelectronics and Defect Tolerance. Technology Shifts. Size Matters. Ops/sec/$ Reconfigurable Nanoelectronics and Defect Tolerance Seth Copen Goldstein Carnegie Mellon University seth@cs.cmu.edu HLDVT 11/13/03 HLDVT '03 (11/13/03) 2003 Seth Copen Goldstein 1 1.E+11 1.E+10 1.E+09

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from David Culler, UC Berkeley CS252, Spr 2002

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from David Culler, UC Berkeley CS252, Spr 2002 Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from David Culler, UC Berkeley CS252, Spr 2002 course slides, 2002 UC Berkeley Some material adapted

More information

Computer System architectures

Computer System architectures CSC 203 1.5 Computer System Architecture Budditha Hettige Department of Statistics and Computer Science University of Sri Jayewardenepura 1 Historical Developments 2 Computer Generation 1. Zeroth generation-

More information

Computer Evolution. Computer Generation. The Zero Generation (3) Charles Babbage. First Generation- Time Line

Computer Evolution. Computer Generation. The Zero Generation (3) Charles Babbage. First Generation- Time Line Computer Generation Computer Evolution Budditha Hettige Department of Computer Science 1. Zeroth generation- Mechanical Computers (1642-1940) 2. First generation - Vacuum Tubes (1940-1955) 3. Second Generation

More information

The Beauty and Joy of Computing

The Beauty and Joy of Computing The Beauty and Joy of Computing Lecture #8 : Concurrency UC Berkeley Teaching Assistant Yaniv Rabbit Assaf Friendship Paradox On average, your friends are more popular than you. The average Facebook user

More information

Handouts. (CSC-3501) Lecture 1 (15 Jan 2008) Seung-Jong Park (Jay) Class information. Schedule (check online frequently)

Handouts. (CSC-3501) Lecture 1 (15 Jan 2008) Seung-Jong Park (Jay) Class information. Schedule (check online frequently) Computer Architecture (CSC-3501) Lecture 1 (15 Jan 2008) Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark 1 Handouts Class information http://www.csc.lsu.edu/~sjpark/cs3501/overview.html Schedule (check

More information

ELCT 501: Digital System Design

ELCT 501: Digital System Design ELCT 501: Digital System Lecture 1: Introduction Dr. Mohamed Abd El Ghany, Mohamed.abdel-ghany@guc.edu.eg Administrative Rules Course components: Lecture: Thursday (fourth slot), 13:15-14:45 (H8) Office

More information

Computer Architecture

Computer Architecture Informatics 3 Computer Architecture Dr. Boris Grot and Dr. Vijay Nagarajan Institute for Computing Systems Architecture, School of Informatics University of Edinburgh General Information Instructors: Boris

More information

Chapter 1 Introduction. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 1 Introduction. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 1 Introduction Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Classes of Computing Applications Hierarchical Layers of Hardware and Software Contents

More information

Computer Architecture

Computer Architecture 188 322 Computer Architecture Lecturer: Watis Leelapatra Office: 4301D Email: watis@kku.ac.th Course Webpage http://gear.kku.ac.th/~watis/courses/188322/188322.html 188 322 Computer Architecture Grading

More information

ECE 261: CMOS VLSI Design Methodologies

ECE 261: CMOS VLSI Design Methodologies ECE 261: CMOS VLSI Design Methodologies Prof. Krishnendu (Krish) Chakrabarty Dept. Electrical and Computer Engineering Room 2513 CIEMAS Ph: 660-5244 E-mail: krish@ee.duke.edu URL: http://www.ee.duke.edu/~krish

More information

Lyman Briggs Lecture Series. Group Question. Discussion Questions. Definition of Computer. Definition of Modern Computer. Definition of a Computer

Lyman Briggs Lecture Series. Group Question. Discussion Questions. Definition of Computer. Definition of Modern Computer. Definition of a Computer Lyman Briggs Lecture Series Emerging Issues in Abortion: Beyond Prolife and Pro-choice Adrienne Asch TONIGHT! 7:30 PM, C-106 Holmes Hall Group Question Get into a group of three people You have three minutes

More information

ENG 101 Lesson -6. History of Computers

ENG 101 Lesson -6. History of Computers Today's lesson will follow the pattern established by us in the earlier lessons.we will read a text to help us in comprehension then we will do exercises based on this text. ENG 101 Lesson -6 When you

More information

2. Computer Evolution and Performance

2. Computer Evolution and Performance 2. Computer Evolution and Performance Spring 2016 Spring 2016 CS430 - Computer Architecture 1 Chapter 2: Computer Evolution and Performance Reading: pp. 16-49 Good Problems to Work: 2.1, 2.3, 2.4, 2.8,

More information

1. UNIVAC is Correct Answer: a. Universal Automatic Computer

1. UNIVAC is Correct Answer: a. Universal Automatic Computer 1. UNIVAC is Correct Answer: a. Universal Automatic Computer Explanation: There are no computers with the name as in other options. UNIVAC was the first general purpose electronic digital computer designed

More information

Computer Architecture Computer Architecture. Computer Architecture. What is Computer Architecture? Grading

Computer Architecture Computer Architecture. Computer Architecture. What is Computer Architecture? Grading 178 322 Computer Architecture Lecturer: Watis Leelapatra Office: 4301D Email: watis@kku.ac.th Course Webpage: http://gear.kku.ac.th/~watis/courses/178322/178322.html Computer Architecture Grading Midterm

More information

VLSI Design Automation

VLSI Design Automation VLSI Design Automation IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing Programmable PLA, FPGA Embedded systems Used in cars,

More information

CMPE 415 Programmable Logic Devices FPGA Technology I

CMPE 415 Programmable Logic Devices FPGA Technology I Department of Computer Science and Electrical Engineering CMPE 415 Programmable Logic Devices FPGA Technology I Prof. Ryan Robucci Some slides (blue-frame) developed by Jim Plusquellic Some images credited

More information

The Generations of Computers

The Generations of Computers The Generations of Computers The development of computers started with mechanical and electromechanical devices (17 th through 19 th century) and has progressed through four generations of computers. Mechanical

More information