CPU Design for Computer Integrated Experiment

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CPU Design for Computer Integrated Experiment"

Transcription

1 CPU Design for Computer Integrated Experiment Shan Lu, Guangyao Li, Yijianan Wang CEIE, Tongji University, Shanghai, China Abstract - Considering the necessity and difficulty of designing a CPU for students, we simplify the MIPS instruction set for a MIPS architecture processor. Besides this, data path is given and all internal modules are compiled such as ALU module, controller module, bus module and so on. After testing and validation, the difficulty and time consumption of designing such a CPU are proved possible for students. As a result, a suit of experiment platforms based on CPU is born. It not only provides students a chance to have their own processor, but also provides us with a platform for further experiment, such as OS and fundamentals of compilation. Key words: MIPS, processor, integrated experiment 1 Introduction Nowadays, most students whose major are CS have little understanding of the principle of CPU works, and have little practice. So these students can hardly grasp the main point of principle computer organization. To solve this problem, a simple student-oriented CPU is born. This design is used to help students to learn more about the computer configuration in practice. What s more, this CPU also provides a platform for the following course of OS and fundamentals of compilation. Thanks to the open instruction model, MIPS instruction set [1] is chosen. In this model, subscribers are encouraged to design your own CPU in accordance with their own demands. Besides this, MIPS belongs to the RISC architecture, and the instructions are simple and few. So it is a good idea to choose MIPS instruction to structure our CPU. It is easy for students to see the achievement in a short term. Verilog [2] is chosen to design this CPU because it is similar to C, and majority of students have C programming foundation. What s more, there are enough choices for you to design, such as ALU module, controller module, I/O module [3], storage module and so on. In this article, the designs and verification of all modules are involved. As a result, this CPU design has achieved the expected effect. 2 The Design of MIPS Processor 2.1 MIPS Instruction Set According to Harvard structure, data are stored separately from instruction. Figure 1 shows the five steps of execute a MIPS instruction in a single cycle. The five steps are IF, ID, EX, MEM, W B. (1) IF step, instruction address is taken from PC Register(PC_Reg) to identify the current execution instruction and sent to Instruction Memory(Instr_Mem) to get the binary code of the instruction through Address Bus. (2) ID step, instruction code is decoded by Controller to get the control signal. According to the different instruction type, the corresponding register value is obtained from the Register File(Reg File). (3) EX step, the operand and the control signal are sent to the ALU for arithmetical or logical operation or the BS module for shifting. (4) MEM step, according to different MIPS instruction, the ALU result will be sent to the bus controller for arbitration. The bus controller will decide the destination of data such as Data Memory(Data_Mem) or GPIO. GPIO module realizes the responsibility of cache to solve the speed relation between internal unit and peripheral unit. (5) WB, according to the control signal, write-back mux module will decide whether the data writes back to the Register File(Reg_File).

2 IF ID EX MEM WB Controller ALU Bus Controller PC Reg Instr Mem WriteBack Mux Reg File BS Data Mem GPIO Figure 1 process and modules of MIPS Figure 2 MIPS processor data path The 30 most common used instructions as shown in Table 1 include the arithmetical operation, logical operation, branch, store instruction and so on. This set meets all the demands we need in the following design. MIPS instruction sets include three types: R-type, I-type and J-type. (1) R-type means register instructions. Two operands are taken from Register File, and the result is also sent to the Register File. (2) I-type means immediate instructions. These instructions fetch 16-bit immediate as an operand. (3) J-type means jump instructions. These instructions fetch 26-bit immediate as the destination address which will be stored into PC Register. of MIPS processor is designed as Figure 2. Pin information and wiring information is designed as well according to the statement in section ALU design ALU module typically handles logical and arithmetical operation. The operation between operand A and B is controlled by ALU control signal(alucontrol). Afterwards ALU result and zero flag can be fetched from the output pins. Figure 3 shows the pin signal and Table 2 shows the detailed information of pins. 2.2 MIPS CPU Design Data Path Design After analyzing the MIPS instruction format and its [4, 5] classification, referring to the relevant CPU design and the MIPS modules defined in Figure 1, the data path Figure 3 ALU pin signal

3 Table 1 MIPS instruction set and its format Mnemonic Symbol Format Sample Bit # R-type op rs rt rd shamt func add rs rt rd add $1,$2,$3 addu rs rt rd addu $1,$2,$3 sub rs rt rd sub $1,$2,$3 subu rs rt rd subu $1,$2,$3 and rs rt rd and $1,$2,$3 or rs rt rd or $1,$2,$3 xor rs rt rd xor $1,$2,$3 nor rs rt rd nor $1,$2,$3 slt rs rt rd slt $1,$2,$3 sltu rs rt rd sltu $1,$2,$3 sll rt rd shamt sll $1,$2,10 srl rt rd shamt srl $1,$2,10 sra rt rd shamt sra $1,$2,10 sllv rs rt rd sllv $1,$2,$3 srlv rs rt rd srlv $1,$2,$3 srav rs rt rd srav $1,$2,$3 jr rs jr $31 Bit # I-type op rs rt immediate addi rs rt immediate addi $1,$2,100 addiu rs rt immediate addiu $1,$2,100 andi rs rt immediate andi $1,$2,10 ori rs rt immediate andi $1,$2,10 xori rs rt immediate andi $1,$2,10 lw rs rt immediate lw $1,10($2) sw rs rt immediate sw $1,10($2) beq rs rt immediate beq $1,$2,10 bne rs rt immediate bne $1,$2,10 slti rs rt immediate slti $1,$2,10 sltiu rs rt immediate sltiu $1,$2,10 Bit # J-type op address j address j jal address jal 10000

4 Table 2 ALU pin signal and function a(31:0) operand a of arithmetical or logical operation b(31:0) operand b of arithmetical or logical operation alucontrol(3:0) control signal, operation type result(31:0) ALU result zero zero flag, if it is effective, ALU result is zero Controller Design During the five steps of implementing MIPS instructions, signals from controller control the data flow in EX step, Mem step and WB step. Controller receives the machine code from instruction register, and then decodes it into control signal to control others modules, such as ALU module, BS module and so on. Figure 4 shows the pin signal and Table 3 shows the detailed information of pins. Figure 4 controller pin signal Table 3 controller pin signal and function funct(5:0) funct filed of instruction ImmHigh(7:0) data bus, controller get the high 8-bit of immediate to identify the data direction, to I/O or memory zero zero flag alucontrol(3:0) ALU control signal bscontrol(2:0) BS control signal aluormem data strobe signal, if it is effective, ALU result is sent to register, else data from memory is sent to register dstreg address strobe signal, if it is effective, Instr are set as destination register address, else bits of instructions are set as destination register address jal data or address strobe signal, when signal is effective, the value of PC+4 is sent to the NO.31 register jmp PC strobe signal, when signal is effective, the jump location is sent to PC register jorjr PC strobe signal, when signal is effective, the jump location is sent to PC register muxtobs bit strobe signal, if it is effective, the bit is the value which is stored in the register, which address is bits of instructions, else the immediate in the 10-6 bits of instruction is sent to BS as the bit to be shifted pcsrc branch signal readio I/O read signal readmem memory read signal rtorimm data strobe signal, if it is effective, ALU operand is the value from register, else 15-0 bits of instruction writebackorbs data strobe signal, if it is effective, BS result is written back writeio I/O write signal writemem memory write signal writereg register write signal zeroorsign extend control signal, if it is effective, the 15-0 bits will extend by zero, else the 15-0 bits will extend by symbol

5 2.2.4 BS Module Design This CPU is a single cycle processor. In this type of process, shift instruction is demanded to complete in a single cycle. Nowadays, there are three popular encoding. After analyzing these decoding, full-encoding [6] is chosen to realize the BS module. For 32-bit barrel shifter, it demands 5-bit control signal to co mplete logical shift, arithmetical shift and cyclic shift. Figure 5 shows the pin signal and Table 4 shows the detailed information of pins. Figure 5 barrel shifter pin signal Table 4 barrel shifter pin signal and function Bit(4:0) bit to shift Sin(31:0) operand type(2:0) type Sout(31:0) BS result Bus Module Bus module provides the unified writing and reading management of I/O and memory. The data can be distributed and I/O selected signal and port address can be given by the I/O or memory read-write signal. Figure 6 shows the pin signal and Table 5 shows the detailed information of pins. Table 5 bus module pin signal and function address(15:0) address bus, the low 16-bit of ALU result is set as the address of memory or I/O iodate(15:0) data bus, the data from I/O is sent to bus controller mdata(31:0) data bus, data from memory is sent to bus controller wdata(31:0) data bus, data from register is sent to bus controller readio I/O read signal readmem memory read signal writeio I/O write signal writemem memory write signal portaddr(3:0) port address, the low 4-bit of I/O address is set as port address rdata(31:0) data bus, I/O or memory read signal decide to read I/O data or memory data write_data(31:0) data bus, I/O or memory write signal decide to write data to I/O or memory LEDCtrl LED strobe signal Register Module Register module(figure 7) consists of 32 registers. Among those registers, No.31 register is used to store return address, the other registers are general-purpose register. During the five steps of implementing MIPS instructions, register module typically handles EX step and WB step. During EX step, operand is fetched from register and sent to ALU module. During WB step, the data is written to the register by the write register signal. Figure 6 bus module pin signal Figure 7 register module pin signal

6 S T E P. A S T E P. B C o n t r o l l o r T e s t i n g P C I n s t r u c t i o n B u s C o n t r o l M e m o r y & R e g A L U B S G P I O Figure 8 module testing process Figure 9 TestBench code Table 6 register module pin signal and function ra1(4:0) address bus, the bits of instruction is send to register as register address ra2(4:0) address bus, the bits of instruction is send to register as register address wa3(4:0) address bus, the data written back is sent to register as register address wd3(31:0) data bus, the data written back is sent to register as register data clk clock signal we3 register write signal rd1(31:0) data bus, the data is read from registers according to the ra1 address rd2(31:0) data bus, the data is read from registers according to the ra2 address 3 Testing and Verification RTL simulation consists of two parts, module testing and system testing. This simulation needs complete testbench, and output response for observation. You can determine whether the design reach the expected function in accordance with these information 3.1 Module Testing This testing is divided into two parts as shown in Figure 8. Step A verifies the correctness of PC to fetch the current instruction and next instruction. That is, to verify whether the MIPS processor fetches the machine code which PC points to, correctly parses the func filed, op filed and ImmHigh field of instruction and sends the binary code into right pin. Step B use QtSpim to generate the machine code of test program. The test programs are required to cover the routine testing and marginal testing.

7 All test programs are run in Modelsim. You can determine whether the design reach the desired function with the help of output pin signal. 3.2 System Testing Write testbench to test the MIPS processor by black box testing. The test which involves all instructions includes logical operation test, arithmetical operation test, GPIO test and so on. Figure 9 shows the testbench code of jump instruction which contains all J-type instruction, jr instruction and parts of I-type instruction such as beq instruction. With the help of instruction execute order and the registers data generated by Modelsim, we can determine whether the design reach the desired function or not. 4 Conclusion A student-oriented MIPS processor is designed to recognize and execute MIPS instruction set correctly. Besides this, as supplements, interface information and function explanation are given. Tests show that the difficulty and time factor are considered to be possible for students to design such a CPU. What s more, the implement of this MIPS processor provide the computer integrated experiment a visual testbed. In the process of this design, students can learn more about the computer configuration in practice. Up till now, we have completed the design and implementation of MIPS processor. The future work is to improve and enlarge the processor, and to program some software such as BIOS, Mini OS or Compiler beyond it. 5 Reference [1] MipsMIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,, MIPS Technologies, Inc. [2] Yuwen Xia, Verilog Digital System Design Tutorial. 2008, Beijing University of Aeronautics and Astronautics Press. [3] XILINX, XPS General Purpose Input/Output(GPIO) (v2.00a). [4] David Money Harris, Sarah L. Harris, Digital Design and Computer Architecture. [5] Quansheng Yang, The Computer System Comprehensive Design Course. 2008, Tsinghua University Press. [6] Field Programmable Gate Array. 1999, Atmel Corporation.

MIPS%Assembly% E155%

MIPS%Assembly% E155% MIPS%Assembly% E155% Outline MIPS Architecture ISA Instruction types Machine codes Procedure call Stack 2 The MIPS Register Set Name Register Number Usage $0 0 the constant value 0 $at 1 assembler temporary

More information

A Processor. Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter , 4.1-3

A Processor. Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter , 4.1-3 A Processor Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University See: P&H Chapter 2.16-20, 4.1-3 Let s build a MIPS CPU but using Harvard architecture Basic Computer System Registers ALU

More information

MIPS Instruction Reference

MIPS Instruction Reference Page 1 of 9 MIPS Instruction Reference This is a description of the MIPS instruction set, their meanings, syntax, semantics, and bit encodings. The syntax given for each instruction refers to the assembly

More information

EE108B Lecture 3. MIPS Assembly Language II

EE108B Lecture 3. MIPS Assembly Language II EE108B Lecture 3 MIPS Assembly Language II Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee108b 1 Announcements Urgent: sign up at EEclass and say if you are taking 3 or 4 units Homework

More information

Concocting an Instruction Set

Concocting an Instruction Set Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Read: Chapter 2.1-2.7 L03 Instruction Set 1 A General-Purpose Computer The von

More information

A General-Purpose Computer The von Neumann Model. Concocting an Instruction Set. Meaning of an Instruction. Anatomy of an Instruction

A General-Purpose Computer The von Neumann Model. Concocting an Instruction Set. Meaning of an Instruction. Anatomy of an Instruction page 1 Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... A General-Purpose Computer The von Neumann Model Many architectural approaches

More information

Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu (Guest starring: Frank K. Gürkaynak and Aanjhan Ranganathan)

Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu (Guest starring: Frank K. Gürkaynak and Aanjhan Ranganathan) Microarchitecture Design of Digital Circuits 27 Srdjan Capkun Onur Mutlu (Guest starring: Frank K. Gürkaynak and Aanjhan Ranganathan) http://www.syssec.ethz.ch/education/digitaltechnik_7 Adapted from Digital

More information

Mips Code Examples Peter Rounce

Mips Code Examples Peter Rounce Mips Code Examples Peter Rounce P.Rounce@cs.ucl.ac.uk Some C Examples Assignment : int j = 10 ; // space must be allocated to variable j Possibility 1: j is stored in a register, i.e. register $2 then

More information

ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013

ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

MIPS Reference Guide

MIPS Reference Guide MIPS Reference Guide Free at PushingButtons.net 2 Table of Contents I. Data Registers 3 II. Instruction Register Formats 4 III. MIPS Instruction Set 5 IV. MIPS Instruction Set (Extended) 6 V. SPIM Programming

More information

Outline. EEL-4713 Computer Architecture Multipliers and shifters. Deriving requirements of ALU. MIPS arithmetic instructions

Outline. EEL-4713 Computer Architecture Multipliers and shifters. Deriving requirements of ALU. MIPS arithmetic instructions Outline EEL-4713 Computer Architecture Multipliers and shifters Multiplication and shift registers Chapter 3, section 3.4 Next lecture Division, floating-point 3.5 3.6 EEL-4713 Ann Gordon-Ross.1 EEL-4713

More information

Concocting an Instruction Set

Concocting an Instruction Set Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Lab is posted. Do your prelab! Stay tuned for the first problem set. L04 Instruction

More information

ECE232: Hardware Organization and Design. Computer Organization - Previously covered

ECE232: Hardware Organization and Design. Computer Organization - Previously covered ECE232: Hardware Organization and Design Part 6: MIPS Instructions II http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Computer Organization

More information

Midterm. CS64 Spring Midterm Exam

Midterm. CS64 Spring Midterm Exam Midterm LAST NAME FIRST NAME PERM Number Instructions Please turn off all pagers, cell phones and beepers. Remove all hats & headphones. Place your backpacks, laptops and jackets at the front. Sit in every

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2009 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers

Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers CSE 675.02: Introduction to Computer Architecture MIPS Processor Memory Instruction Set Architecture of MIPS Processor CPU Arithmetic Logic unit Registers $0 $31 Multiply divide Coprocessor 1 (FPU) Registers

More information

CS 4200/5200 Computer Architecture I

CS 4200/5200 Computer Architecture I CS 4200/5200 Computer Architecture I MIPS Instruction Set Architecture Dr. Xiaobo Zhou Department of Computer Science CS420/520 Lec3.1 UC. Colorado Springs Adapted from UCB97 & UCB03 Review: Organizational

More information

ECE Exam I February 19 th, :00 pm 4:25pm

ECE Exam I February 19 th, :00 pm 4:25pm ECE 3056 Exam I February 19 th, 2015 3:00 pm 4:25pm 1. The exam is closed, notes, closed text, and no calculators. 2. The Georgia Tech Honor Code governs this examination. 3. There are 4 questions and

More information

Processor (I) - datapath & control. Hwansoo Han

Processor (I) - datapath & control. Hwansoo Han Processor (I) - datapath & control Hwansoo Han Introduction CPU performance factors Instruction count - Determined by ISA and compiler CPI and Cycle time - Determined by CPU hardware We will examine two

More information

CPS311 - COMPUTER ORGANIZATION. A bit of history

CPS311 - COMPUTER ORGANIZATION. A bit of history CPS311 - COMPUTER ORGANIZATION A Brief Introduction to the MIPS Architecture A bit of history The MIPS architecture grows out of an early 1980's research project at Stanford University. In 1984, MIPS computer

More information

Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA.

Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA. Today s topics CS/COE1541: Introduction to Computer Architecture MIPS operations and operands MIPS registers Memory view Instruction encoding A Review of MIPS ISA Sangyeun Cho Arithmetic operations Logic

More information

Computer Organization MIPS Architecture. Department of Computer Science Missouri University of Science & Technology

Computer Organization MIPS Architecture. Department of Computer Science Missouri University of Science & Technology Computer Organization MIPS Architecture Department of Computer Science Missouri University of Science & Technology hurson@mst.edu Computer Organization Note, this unit will be covered in three lectures.

More information

MIPS PROJECT INSTRUCTION SET and FORMAT

MIPS PROJECT INSTRUCTION SET and FORMAT ECE 312: Semester Project MIPS PROJECT INSTRUCTION SET FORMAT This is a description of the required MIPS instruction set, their meanings, syntax, semantics, bit encodings. The syntax given for each instruction

More information

Today s Lecture. MIPS Assembly Language. Review: What Must be Specified? Review: A Program. Review: MIPS Instruction Formats

Today s Lecture. MIPS Assembly Language. Review: What Must be Specified? Review: A Program. Review: MIPS Instruction Formats Today s Lecture Homework #2 Midterm I Feb 22 (in class closed book) MIPS Assembly Language Computer Science 14 Lecture 6 Outline Assembly Programming Reading Chapter 2, Appendix B 2 Review: A Program Review:

More information

MIPS Instruction Format

MIPS Instruction Format MIPS Instruction Format MIPS uses a 32-bit fixed-length instruction format. only three different instruction word formats: There are Register format Op-code Rs Rt Rd Function code 000000 sssss ttttt ddddd

More information

EE 109 Unit 8 MIPS Instruction Set

EE 109 Unit 8 MIPS Instruction Set 1 EE 109 Unit 8 MIPS Instruction Set 2 Architecting a vocabulary for the HW INSTRUCTION SET OVERVIEW 3 Instruction Set Architecture (ISA) Defines the software interface of the processor and memory system

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University. Instructions: ti Language of the Computer Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Computer Hierarchy Levels Language understood

More information

Grading: 3 pts each part. If answer is correct but uses more instructions, 1 pt off. Wrong answer 3pts off.

Grading: 3 pts each part. If answer is correct but uses more instructions, 1 pt off. Wrong answer 3pts off. Department of Electrical and Computer Engineering University of Wisconsin Madison ECE 552 Introductions to Computer Architecture Homework #2 (Suggested Solution) 1. (10 points) MIPS and C program translations

More information

Mark Redekopp, All rights reserved. EE 352 Unit 3 MIPS ISA

Mark Redekopp, All rights reserved. EE 352 Unit 3 MIPS ISA EE 352 Unit 3 MIPS ISA Instruction Set Architecture (ISA) Defines the software interface of the processor and memory system Instruction set is the vocabulary the HW can understand and the SW is composed

More information

Digital Design & Computer Architecture (E85) D. Money Harris Fall 2007

Digital Design & Computer Architecture (E85) D. Money Harris Fall 2007 Digital Design & Computer Architecture (E85) D. Money Harris Fall 2007 Final Exam This is a closed-book take-home exam. You are permitted a calculator and two 8.5x sheets of paper with notes. The exam

More information

CS 61C: Great Ideas in Computer Architecture. MIPS CPU Datapath, Control Introduction

CS 61C: Great Ideas in Computer Architecture. MIPS CPU Datapath, Control Introduction CS 61C: Great Ideas in Computer Architecture MIPS CPU Datapath, Control Introduction Instructor: Alan Christopher 7/28/214 Summer 214 -- Lecture #2 1 Review of Last Lecture Critical path constrains clock

More information

COMPUTER ORGANIZATION AND DESIGN. The Hardware/Software Interface. Chapter 4. The Processor: A Based on P&H

COMPUTER ORGANIZATION AND DESIGN. The Hardware/Software Interface. Chapter 4. The Processor: A Based on P&H COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface Chapter 4 The Processor: A Based on P&H Introduction We will examine two MIPS implementations A simplified version A more realistic pipelined

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 11: Datapath. Bernhard Boser & Randy Katz

CS 61C: Great Ideas in Computer Architecture. Lecture 11: Datapath. Bernhard Boser & Randy Katz CS 61C: Great Ideas in Computer Architecture Lecture 11: Datapath Bernhard Boser & Randy Katz http://inst.eecs.berkeley.edu/~cs61c Agenda MIPS Datapath add instruction register transfer level circuit timing

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures $2M 3D camera Lecture 8 MIPS Instruction Representation I Instructor: Miki Lustig 2014-09-17 August 25: The final ISA showdown: Is ARM, x86, or

More information

ECE170 Computer Architecture. Single Cycle Control. Review: 3b: Add & Subtract. Review: 3e: Store Operations. Review: 3d: Load Operations

ECE170 Computer Architecture. Single Cycle Control. Review: 3b: Add & Subtract. Review: 3e: Store Operations. Review: 3d: Load Operations ECE7 Computer Architecture Single Cycle Control Review: 3a: Overview of the Fetch Unit The common operations Fetch the : mem[] Update the program counter: Sequential Code: < + Branch and Jump: < something

More information

Chapter 4. The Processor. Instruction count Determined by ISA and compiler. We will examine two MIPS implementations

Chapter 4. The Processor. Instruction count Determined by ISA and compiler. We will examine two MIPS implementations Chapter 4 The Processor Part I Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations

More information

SPIM Instruction Set

SPIM Instruction Set SPIM Instruction Set This document gives an overview of the more common instructions used in the SPIM simulator. Overview The SPIM simulator implements the full MIPS instruction set, as well as a large

More information

COMP 303 MIPS Processor Design Project 3: Simple Execution Loop

COMP 303 MIPS Processor Design Project 3: Simple Execution Loop COMP 303 MIPS Processor Design Project 3: Simple Execution Loop Due date: November 20, 23:59 Overview: In the first three projects for COMP 303, you will design and implement a subset of the MIPS32 architecture

More information

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Introduction Chapter 4.1 Chapter 4.2 Review: MIPS (RISC) Design Principles Simplicity favors regularity fixed size instructions small number

More information

CPU Organization (Design)

CPU Organization (Design) ISA Requirements CPU Organization (Design) Datapath Design: Capabilities & performance characteristics of principal Functional Units (FUs) needed by ISA instructions (e.g., Registers, ALU, Shifters, Logic

More information

Materials: 1. Projectable Version of Diagrams 2. MIPS Simulation 3. Code for Lab 5 - part 1 to demonstrate using microprogramming

Materials: 1. Projectable Version of Diagrams 2. MIPS Simulation 3. Code for Lab 5 - part 1 to demonstrate using microprogramming CS311 Lecture: CPU Control: Hardwired control and Microprogrammed Control Last revised October 18, 2007 Objectives: 1. To explain the concept of a control word 2. To show how control words can be generated

More information

Lab 4 Report. Single Cycle Design BAOTUNG C. TRAN EEL4713C

Lab 4 Report. Single Cycle Design BAOTUNG C. TRAN EEL4713C Lab 4 Report Single Cycle Design BAOTUNG C. TRAN EEL4713C Added Hardware : Andi and Ori : For this instruction, I had to add a zero extender into my design. Which therefore required me to add a mux that

More information

B649 Graduate Computer Architecture. Lec 1 - Introduction

B649 Graduate Computer Architecture. Lec 1 - Introduction B649 Graduate Computer Architecture Lec 1 - Introduction http://www.cs.indiana.edu/~achauhan/teaching/ B649/2009-Spring/ 1/12/09 b649, Lec 01-intro 2 Outline Computer Science at a Crossroads Computer Architecture

More information

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu School of Engineering Brown University Spring 2014 Sources: Computer

More information

MIPS ISA and MIPS Assembly. CS301 Prof. Szajda

MIPS ISA and MIPS Assembly. CS301 Prof. Szajda MIPS ISA and MIPS Assembly CS301 Prof. Szajda Administrative HW #2 due Wednesday (9/11) at 5pm Lab #2 due Friday (9/13) 1:30pm Read Appendix B5, B6, B.9 and Chapter 2.5-2.9 (if you have not already done

More information

EE 357 Project Multicycle CPU 1

EE 357 Project Multicycle CPU 1 EE 357 Project Multicycle CPU Introduction You will work in teams of one or two to implement a basic multicycle CPU that can execute five MIPS instruction types (LW/SW, R-Type, BEQ, J, and ADDI). You will

More information

The overall datapath for RT, lw,sw beq instrucution

The overall datapath for RT, lw,sw beq instrucution Designing The Main Control Unit: Remember the three instruction classes {R-type, Memory, Branch}: a) R-type : Op rs rt rd shamt funct 1.src 2.src dest. 31-26 25-21 20-16 15-11 10-6 5-0 a) Memory : Op rs

More information

Chapter 2. Instruction Set Architecture (ISA)

Chapter 2. Instruction Set Architecture (ISA) Chapter 2 Instruction Set Architecture (ISA) MIPS arithmetic Design Principle: simplicity favors regularity. Why? Of course this complicates some things... C code: A = B + C + D; E = F - A; MIPS code:

More information

Digital System Design II

Digital System Design II Digital System Design II 数字系统设计 II Peng Liu ( 刘鹏 ) Dept. of Info. Sci. & Elec. Engg. Zhejiang University liupeng@zju.edu.cn Lecture 2 MIPS Instruction Set Architecture 2 Textbook reading MIPS ISA 2.1-2.4

More information

Announcements. EE108B Lecture MIPS Assembly Language III. MIPS Machine Instruction Review: Instruction Format Summary

Announcements. EE108B Lecture MIPS Assembly Language III. MIPS Machine Instruction Review: Instruction Format Summary Announcements EE108B Lecture MIPS Assembly Language III Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee108b PA1 available, due on Thursday 2/8 Work on you own (no groups) Homework

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

Assembly Language Programming. CPSC 252 Computer Organization Ellen Walker, Hiram College

Assembly Language Programming. CPSC 252 Computer Organization Ellen Walker, Hiram College Assembly Language Programming CPSC 252 Computer Organization Ellen Walker, Hiram College Instruction Set Design Complex and powerful enough to enable any computation Simplicity of equipment MIPS Microprocessor

More information

ECE 2035 A Programming Hw/Sw Systems Fall problems, 10 pages Final Exam 14 December 2016

ECE 2035 A Programming Hw/Sw Systems Fall problems, 10 pages Final Exam 14 December 2016 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

Forecast. Instructions (354 Review) Basics. Basics. Instruction set architecture (ISA) is its vocabulary. Instructions are the words of a computer

Forecast. Instructions (354 Review) Basics. Basics. Instruction set architecture (ISA) is its vocabulary. Instructions are the words of a computer Instructions (354 Review) Forecast Instructions are the words of a computer Instruction set architecture (ISA) is its vocabulary With a few other things, this defines the interface of computers But implementations

More information

Harnessing FPGAs for Computer Architecture Education

Harnessing FPGAs for Computer Architecture Education Harnessing FPGAs for Computer Architecture Education Mark Holland, James Harris, Scott Hauck Department of Electrical Engineering University of Washington, Seattle, WA 98195, USA mholland@ee.washington.edu,

More information

RISC, CISC, and Assemblers

RISC, CISC, and Assemblers RISC, CISC, and Assemblers Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University See P&H Appendix B.1 2, and Chapters 2.8 and 2.12; als 2.16 and 2.17 Big Picture: Understanding Tradeoffs

More information

Review (1/2) IEEE 754 Floating Point Standard: Kahan pack as much in as could get away with. CS61C - Machine Structures

Review (1/2) IEEE 754 Floating Point Standard: Kahan pack as much in as could get away with. CS61C - Machine Structures Review (1/2) CS61C - Machine Structures Lecture 11 - Starting a Program October 4, 2000 David Patterson http://www-inst.eecs.berkeley.edu/~cs61c/ IEEE 754 Floating Point Standard: Kahan pack as much in

More information

CS152 Computer Architecture and Engineering. Lecture 1 Introduction & MIPS Review Dave Patterson. www-inst.eecs.berkeley.

CS152 Computer Architecture and Engineering. Lecture 1 Introduction & MIPS Review Dave Patterson. www-inst.eecs.berkeley. CS152 Computer Architecture and Engineering Lecture 1 Introduction & MIPS Review 2003-08-26 Dave Patterson (www.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs152/ CS 152 L01 Introduction &

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Datapath for a Simplified Processor James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy Introduction

More information

Welcome to CS250 VLSI Systems Design

Welcome to CS250 VLSI Systems Design Image Courtesy: Intel Welcome to CS250 VLSI Systems Design 9/2/10 Yunsup Lee YUNSUP LEE Email: yunsup@cs.berkeley.edu Please add [CS250] in the subject Will try to get back in a day CS250 Newsgroup Post

More information

CS3350B Computer Architecture

CS3350B Computer Architecture CS3350B Computer Architecture Winter 2015 Lecture 4.1: MIPS ISA: Introduction Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted d from lectures on Computer Organization and Design, Patterson & Hennessy,

More information

CS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats

CS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats CS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Machine Interpretation Levels of Representation/Interpretation

More information

MIPS Assembly Programming

MIPS Assembly Programming COMP 212 Computer Organization & Architecture COMP 212 Fall 2008 Lecture 8 Cache & Disk System Review MIPS Assembly Programming Comp 212 Computer Org & Arch 1 Z. Li, 2008 Comp 212 Computer Org & Arch 2

More information

MIPS (SPIM) Assembler Syntax

MIPS (SPIM) Assembler Syntax MIPS (SPIM) Assembler Syntax Comments begin with # Everything from # to the end of the line is ignored Identifiers are a sequence of alphanumeric characters, underbars (_), and dots () that do not begin

More information

Single Cycle Datapath

Single Cycle Datapath Single Cycle atapath Lecture notes from MKP, H. H. Lee and S. Yalamanchili Section 4.-4.4 Appendices B.7, B.8, B.,.2 Practice Problems:, 4, 6, 9 ing (2) Introduction We will examine two MIPS implementations

More information

Lecture 4: Review of MIPS. Instruction formats, impl. of control and datapath, pipelined impl.

Lecture 4: Review of MIPS. Instruction formats, impl. of control and datapath, pipelined impl. Lecture 4: Review of MIPS Instruction formats, impl. of control and datapath, pipelined impl. 1 MIPS Instruction Types Data transfer: Load and store Integer arithmetic/logic Floating point arithmetic Control

More information

Computer Architecture. Chapter 3: Arithmetic for Computers

Computer Architecture. Chapter 3: Arithmetic for Computers 182.092 Computer Architecture Chapter 3: Arithmetic for Computers Adapted from Computer Organization and Design, 4 th Edition, Patterson & Hennessy, 2008, Morgan Kaufmann Publishers and Mary Jane Irwin

More information

ISA: The Hardware Software Interface

ISA: The Hardware Software Interface ISA: The Hardware Software Interface Instruction Set Architecture (ISA) is where software meets hardware In embedded systems, this boundary is often flexible Understanding of ISA design is therefore important

More information

MIPS-Lite Single-Cycle Control

MIPS-Lite Single-Cycle Control MIPS-Lite Single-Cycle Control COE68: Computer Organization and Architecture Dr. Gul N. Khan http://www.ee.ryerson.ca/~gnkhan Electrical and Computer Engineering Ryerson University Overview Single cycle

More information

Review of the Machine Cycle

Review of the Machine Cycle MIPS Branch and Jump Instructions Cptr280 Dr Curtis Nelson Review of the Machine Cycle When a program is executing, its instructions are located in main memory. The address of an instruction is the address

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 13 Introduction to MIPS Instruction Representation I Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Anyone seen Terminator? Military

More information

UCB CS61C : Machine Structures

UCB CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 10 Introduction to MIPS Procedures I Sr Lecturer SOE Dan Garcia 2014-02-14 If cars broadcast their speeds to other vehicles (and the

More information

Computer Architecture. Lecture 2 : Instructions

Computer Architecture. Lecture 2 : Instructions Computer Architecture Lecture 2 : Instructions 1 Components of a Computer Hierarchical Layers of Program Code 3 Instruction Set The repertoire of instructions of a computer 2.1 Intr roduction Different

More information

Computer Architecture EE 4720 Midterm Examination

Computer Architecture EE 4720 Midterm Examination Name Solution Computer Architecture EE 4720 Midterm Examination Wednesday, 22 March 2017, 9:30 10:20 CT Alias MIPS-a-brazo Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Exam Total (20 pts) (20 pts)

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 13 & 14

CO Computer Architecture and Programming Languages CAPL. Lecture 13 & 14 CO20-320241 Computer Architecture and Programming Languages CAPL Lecture 13 & 14 Dr. Kinga Lipskoch Fall 2017 Frame Pointer (1) The stack is also used to store variables that are local to function, but

More information

Lecture 6 Decision + Shift + I/O

Lecture 6 Decision + Shift + I/O Lecture 6 Decision + Shift + I/O Instructions so far MIPS C Program add, sub, addi, multi, div lw $t0,12($s0) sw $t0, 12($s0) beq $s0, $s1, L1 bne $s0, $s1, L1 j L1 (unconditional branch) slt reg1,reg2,reg3

More information

4. What is the average CPI of a 1.4 GHz machine that executes 12.5 million instructions in 12 seconds?

4. What is the average CPI of a 1.4 GHz machine that executes 12.5 million instructions in 12 seconds? Chapter 4: Assessing and Understanding Performance 1. Define response (execution) time. 2. Define throughput. 3. Describe why using the clock rate of a processor is a bad way to measure performance. Provide

More information

All instructions have 3 operands Operand order is fixed (destination first)

All instructions have 3 operands Operand order is fixed (destination first) Instruction Set Architecture for MIPS Processors Overview Dr. Arjan Durresi Louisiana State University Baton Rouge, LA 70803 durresi@csc.lsu.edu These slides are available at: http://www.csc.lsu.edu/~durresi/_07/

More information

Problem maximum score 1 35pts 2 22pts 3 23pts 4 15pts Total 95pts

Problem maximum score 1 35pts 2 22pts 3 23pts 4 15pts Total 95pts University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences CS61c Summer 2001 Woojin Yu Midterm Exam This is a closed-book exam. No calculators

More information

CSc 256 Final Spring 2011

CSc 256 Final Spring 2011 CSc 256 Final Spring 2011 NAME: Problem1: Convertthedecimalfloatingpointnumber 4.3toa32 bitfloat(inbinary)inieee 754standardrepresentation.Showworkforpartialcredit.10points Hint:IEEE754formatfor32 bitfloatsconsistsofs

More information

CS232 Final Exam May 5, 2001

CS232 Final Exam May 5, 2001 CS232 Final Exam May 5, 2 Name: Spiderman This exam has 4 pages, including this cover. There are six questions, worth a total of 5 points. You have 3 hours. Budget your time! Write clearly and show your

More information

Operands and Addressing Modes

Operands and Addressing Modes Operands and Addressing Modes Where is the data? Addresses as data Names and Values Indirection L5 Addressing Modes 1 Assembly Exercise Let s write some assembly language programs Program #1: Write a function

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 14 Introduction to MIPS Instruction Representation II 2004-02-23 Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia In the US, who is

More information

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine Machine Language Instructions Introduction Instructions Words of a language understood by machine Instruction set Vocabulary of the machine Current goal: to relate a high level language to instruction

More information

Materials: 1. Projectable Version of Diagrams 2. MIPS Simulation 3. Code for Lab 5 - part 1 to demonstrate using microprogramming

Materials: 1. Projectable Version of Diagrams 2. MIPS Simulation 3. Code for Lab 5 - part 1 to demonstrate using microprogramming CPS311 Lecture: CPU Control: Hardwired control and Microprogrammed Control Last revised October 23, 2015 Objectives: 1. To explain the concept of a control word 2. To show how control words can be generated

More information

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 MIPS Intro II Lect 10 Feb 15, 2008 Adapted from slides developed for: Mary J. Irwin PSU CSE331 Dave Patterson s UCB CS152 M230 L10.1

More information

We will study the MIPS assembly language as an exemplar of the concept.

We will study the MIPS assembly language as an exemplar of the concept. MIPS Assembly Language 1 We will study the MIPS assembly language as an exemplar of the concept. MIPS assembly instructions each consist of a single token specifying the command to be carried out, and

More information

CS250 Section 4. 9/21/10 Yunsup Lee. Image Courtesy: Tilera

CS250 Section 4. 9/21/10 Yunsup Lee. Image Courtesy: Tilera CS250 Section 4 9/21/10 Yunsup Lee Image Courtesy: Tilera Any questions on lab 2 & lab 3? Doing okay with gate-level simulations? Announcements I m still working to get physical libraries for lab 3 work

More information

Lecture Topics. Branch Condition Options. Branch Conditions ECE 486/586. Computer Architecture. Lecture # 8. Instruction Set Principles.

Lecture Topics. Branch Condition Options. Branch Conditions ECE 486/586. Computer Architecture. Lecture # 8. Instruction Set Principles. ECE 486/586 Computer Architecture Lecture # 8 Spring 2015 Portland State University Instruction Set Principles MIPS Control flow instructions Dealing with constants IA-32 Fallacies and Pitfalls Reference:

More information

Chapter 4 The Processor

Chapter 4 The Processor Chapter 4 The Processor 4.1 Introduction 4.2 Logic Design Conventions 4.3 The Single-Cycle Design 4.4 The Pipelined Design (c) Kevin R. Burger :: Computer Science & Engineering :: Arizona State University

More information

Architecture I. Computer Systems Laboratory Sungkyunkwan University

Architecture I. Computer Systems Laboratory Sungkyunkwan University MIPS Instruction ti Set Architecture I Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Architecture (1) the attributes of a system as seen by the

More information

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero Do-While Example In C++ do { z--; while (a == b); z = b; In assembly language loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero 25 Comparisons Set on less than (slt) compares its source registers

More information

Computer Hardware Engineering

Computer Hardware Engineering Computer Hardware Engineering IS2, spring 27 Lecture 9: LU and s ssociate Professor, KTH Royal Institute of Technology Slides version. 2 Course Structure Module : C and ssembly Programming LE LE2 LE EX

More information

Machine Organization & Assembly Language

Machine Organization & Assembly Language Name: CSE 378 Winter 29 Machine Organization & Assembly Language Midterm Exam Solution your answers on these pages. itional pages may be attached (with staple) if necessary. Please ensure that your answers

More information

A MIPS R10000-LIKE OUT-OF-ORDER MICROPROCESSOR IMPLEMENTATION IN VERILOG HDL

A MIPS R10000-LIKE OUT-OF-ORDER MICROPROCESSOR IMPLEMENTATION IN VERILOG HDL A MIPS R10000-LIKE OUT-OF-ORDER MICROPROCESSOR IMPLEMENTATION IN VERILOG HDL A Design Project Report Presented to the Engineering Division of the Graduate School Of Cornell University In Partial Fulfillment

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 14 Introduction to MIPS Instruction Representation II Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Are you P2P sharing fans? Two

More information

CPE 335. Basic MIPS Architecture Part II

CPE 335. Basic MIPS Architecture Part II CPE 335 Computer Organization Basic MIPS Architecture Part II Dr. Iyad Jafar Adapted from Dr. Gheith Abandah slides http://www.abandah.com/gheith/courses/cpe335_s08/index.html CPE232 Basic MIPS Architecture

More information

HW2 solutions You did this for Lab sbn temp, temp,.+1 # temp = 0; sbn temp, b,.+1 # temp = -b; sbn a, temp,.+1 # a = a (-b) = a + b;

HW2 solutions You did this for Lab sbn temp, temp,.+1 # temp = 0; sbn temp, b,.+1 # temp = -b; sbn a, temp,.+1 # a = a (-b) = a + b; HW2 solutions 3.10 Pseuodinstructions What is accomplished Minimum sequence of Mips Move $t5, $t3 $t5=$t3 Add $t5, $t3, $0 Clear $t5 $t5=0 Xor $t5, $t5, $t5 Li $t5, small $t5=small Addi $t5, $0, small

More information

DLX computer. Electronic Computers M

DLX computer. Electronic Computers M DLX computer Electronic Computers 1 RISC architectures RISC vs CISC (Reduced Instruction Set Computer vs Complex Instruction Set Computer In CISC architectures the 10% of the instructions are used in 90%

More information