Dependable VLSI Platform using Robust Fabrics

Size: px
Start display at page:

Download "Dependable VLSI Platform using Robust Fabrics"

Transcription

1 Dependable VLSI Platform using Robust Fabrics Director H. Onodera, Kyoto Univ. Principal Researchers T. Onoye, Y. Mitsuyama, K. Kobayashi, H. Shimada, H. Kanbara, K. Wakabayasi

2 Background: Overall Design Technology Challenges (ITRS2011) Design productivity Power consumption Manufacturability Performance/power variability, device parameter variability, lithography limitations Interference Reliability and resilience Logic/circuit/physical: MTTF-aware design, builtin-self-repair, soft-error correction 1

3 Dependable VLSI Platform using Robust Fabrics Target: Resolving the challenges in Manufacturability, Variability, Aging, Soft errors, NRE-cost explosion Method: Collaborative researches for Layout/Circuit/Architecture/Mapping Layout: Robust structure for enhanced manufacturability Circuit:Adaptive performance tuning Architecture:Adaptive redundancy in reconfigurable architecture Mapping: dependability-aware HLS and mapping from C Goal: Dependability-aware VLSI Platform Reliability: Max Dependable Processor DMAC Reconfigurable Cluster Array (FRRARY) Reconfigurable Array I/F SRAM (Local Memory) WISHBONE External I/Fs Direct I/O Ext. I/O Application in C Digital Filter (FIR, IIR), CRC, FEC (LDPC,Viterbi), Cipher (AES), Reliability-aware Mapping (Controller, etc.) Mapping Reliability Reliability: Regular Area: Min. Area Reliability: High Area: Small Reliability Area Tradeoff Area-effective Mapping (Datapath etc.) Reliability & Area aware Mapping (I/Os, etc.) Reconfigurable Array Architecture using Robust Fabrics Dependable VLSI Platform 2

4 Research Team Robust Fabric Variation-tolerant fabrics Onodera, Sato, Tsuchiya (Kyoto U.) Reconfigurable Architecture Flexible reliability, hot swap Onoye, Hashimoto(Osaka U.), Mitsuyama (Kochi U. Tech.) Reliable Processor Reliability-aware circuit and architecture Kobayashi(KIT), Shimada, Yao(NAIST) Mapping Techniques Reliability-aware mapping Ochi, Tsutsui (Kyoto Univ.) C-language based Tool Reliability-aware HLS from C Wakabayashi, Takenaka, Noda(NEC) Applications Dependability measure, applications Kanbara (ASTEM) 3

5 Key Achievements Dependable Platform SoC 5 3 Dependable Processor DMAC SRAM (Local Memory) 4 Reconfigurable Cluster Array (FRRAry) Reconfigurable Array I/F Dependable VLSI Platform WISHBONE Ext. I/O Bus I/F Direct I/O Applications in C Digital Filter (FIR, IIR), CRC, FEC (LDPC,Viterbi), Cipher (AES), Mapping Reconfigurable Array Architecture using Robust Fabrics 1. Radiation tolerant flip-flop 2. Variability compensation by localized body biasing 3. Reliable pipeline processor 4. Reconfigurable architecture with flexible reliability 5. Dependable VLSI Platform SoC & C-based Design Tools 4

6 1. Radiation-tolerant FF: BCDMR FF # of errors in 50min. Neutron Irradiation for 202k BCDMR FFs well Clock Freq.[MHz] twin triple Conventional FF: #errors:260 Bi-stable Cross-coupled Dual Modular Redundancy FF Redundant FF for soft errors based on BISER(Intel, Stanford) Neutron irradiation test for 50min No error is observed in 202,000 BCDMR FFs (65nm) At least 260x stronger than conventional FFs Deliverable in 65nm 5

7 2. Variability Compensation by Localized Body Biasing Features Variability compensation by fine grained ( ~0.1mm 2 ) adaptive body biasing SS, SF, FS corner performance can be compensated to Typical Area overhead less than 3% Developed IPs All-digital pmos/nmos monitors Cell-base-designed body biasing circuits Other Features WID as well as D2D variability compensation Compatibility with Cell-base design Substrate island (SI) Built-in self-adjustment module (BISAM) Chip Localized Body biasing 6 6

8 3. Reliable Pipeline Processor : DARA DARA: Dynamic Adaptive Redundancy Architecture ==? ==? ==? ==? Next TMR building brick: pipeline DMR: address SEE TMR: locate defects DMR: salvage useful units α-particle stress test on a 180nm DARA chip 5x5mm 2, 180nm, 1.25V α-particle source HOST Test platform (chip under α-particle source) By scan-chain: 14.5 errors/60 sec in 1,080 unprotected FFs. Estimated SEE injection rate: 0.58 errors/sec Survived stress tests for 60s+. Not every SEE goes to error: 0.34 recoveris/sec in DARA

9 4. Reconfigurable Architecture with Flexible Reliability Coarse-grained reconfigurable architecture enabling adaptive redundancy and hot swapping Redundancy level can be selected for each processing element. minimize area and power overhead. Configuration memory can be protected by TMR. Target application domain can be expanded by adopting LUT-based fine-grained element. - 65nm CMOS - 4.2mm x 4.2mm - #clusters: - ALU : 26 - Memory: 6 - LUT : 80 DARA Memory clusters FRRARY LUT clusters ALU clusters Voter for config. mem Config. Mem Input from neighboring cluster Execution module Cell Execution module Cell Execution module Cell Execution module Cell Reconfigurable cell unit Redundancy ctrl unit Comp. and votin unit Selector Dependable VLSI platform SoC Output to neighboring cluster Cluster architecture 8

10 Combination of coarse-grained and fine-grained elements Control Datapath Application mapping Fine-grained element (LUT cluster) Dependable VLSI platform SoC Coarse-grained element 9 (ALU cluster)

11 5. Dependable VLSI Platform SoC and C-based Design Tools Dependable VLSI Platform Hardware Flexible Reliability Reconfigurable Array(FRRARY) Reliable Processor(DARA) Dependable VLSI Platform Software C-based High-Level Synthesis Reliability-aware Mapping Dependable VLSI platform Design Tools ANSI-C C-based HLS RTL Mapping DARA Memory clusters FRRARY LUT clusters ALU clusters DARA FRRARY FRRARY I/F WISHBONE Ext. I/O Controller Video I/O FRRARY Camera In SpW SRAM I/O FPGA Display Dependable VLSI Platform SoC Evaluation system 10

12 Dependable VLSI Platform using Robust Fabrics Target: Resolving the challenges in Manufacturability, Variability, Aging, Soft errors, NRE-cost explosion Solutions Fabrics: Radiation and variation tolerant FFs Circuit:Adaptive performance tuning by localized body biasing Architecture:Adaptive redundancy in reconfigurable architecture and processor Mapping: dependability-aware HLS and mapping from C Reliability: Max Goal: Dependable VLSI Platform Dependable Processor DMAC Reconfigurable Cluster Array (FRRARY) Reconfigurable Array I/F SRAM (Local Memory) Dependable VLSI Platform WISHBONE External I/Fs Direct I/O Ext. I/O Application in C Digital Filter (FIR, IIR), CRC, FEC (LDPC,Viterbi), Cipher (AES), Reliability-aware Mapping (Controller, etc.) Mapping Reliability Reliability: Regular Area: Min. Area Reliability: High Area: Small Reliability Area Tradeoff Area-effective Mapping (Datapath etc.) Reliability & Area aware Mapping (I/Os, etc.) Reconfigurable Array Architecture using Robust Fabrics 11

Soft-error and Variability Resilience in Dependable VLSI Platform. Hidetoshi Onodera Kyoto University

Soft-error and Variability Resilience in Dependable VLSI Platform. Hidetoshi Onodera Kyoto University Soft-error and Variability Resilience in Dependable VLSI Platform Hidetoshi Onodera Kyoto University Outline: Soft-error and Variability Resilience 1 Background Overview: Dependable VLSI Platform Circuit-level

More information

Dependable VLSI Platform Using Robust Fabrics

Dependable VLSI Platform Using Robust Fabrics Dependable VLSI Platform Using Robust Fabrics Hidetoshi Onodera, T. Sato, A. Tsuchiya (Kyoto Univ.) T. Onoye, M. Hashimoto, Y. Mitsuyama (Osaka Univ.) H. Ochi (Kyoto U.), K. Kobayashi (KIT), H. Shimada

More information

WITH aggressive process scaling, sustaining reliability

WITH aggressive process scaling, sustaining reliability IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013 2165 Implementing Flexible Reliability in a Coarse-Grained Reconfigurable Architecture Dawood Alnajjar,

More information

COARSE-GRAINED DYNAMICALLY RECONFIGURABLE ARCHITECTURE WITH FLEXIBLE RELIABILITY

COARSE-GRAINED DYNAMICALLY RECONFIGURABLE ARCHITECTURE WITH FLEXIBLE RELIABILITY COARSE-GRAINED DYNAMICALLY RECONFIGURABLE ARCITECTURE WIT FLEXIBLE RELIABILITY Dawood ALNAJJAR, Younghun KO, Takashi IMAGAWA, iroaki KONOURA, Masayuki IROMOTO, Yukio MITSUYAMA, Masanori ASIMOTO, iroyuki

More information

Outline of Presentation Field Programmable Gate Arrays (FPGAs(

Outline of Presentation Field Programmable Gate Arrays (FPGAs( FPGA Architectures and Operation for Tolerating SEUs Chuck Stroud Electrical and Computer Engineering Auburn University Outline of Presentation Field Programmable Gate Arrays (FPGAs( FPGAs) How Programmable

More information

Multi processor systems with configurable hardware acceleration

Multi processor systems with configurable hardware acceleration Multi processor systems with configurable hardware acceleration Ph.D in Electronics, Computer Science and Telecommunications Ph.D Student: Davide Rossi Ph.D Tutor: Prof. Roberto Guerrieri Outline Motivations

More information

Ultra Depedable VLSI by Collaboration of Formal Verifications and Architectural Technologies

Ultra Depedable VLSI by Collaboration of Formal Verifications and Architectural Technologies Ultra Depedable VLSI by Collaboration of Formal Verifications and Architectural Technologies CREST-DVLSI - Fundamental Technologies for Dependable VLSI Systems - Masahiro Fujita Shuichi Sakai Masahiro

More information

Thermal-aware Fault-Tolerant System Design with Coarse-Grained Reconfigurable Array Architecture

Thermal-aware Fault-Tolerant System Design with Coarse-Grained Reconfigurable Array Architecture 2010 NASA/ESA Conference on Adaptive Hardware and Systems Thermal-aware Fault-Tolerant System Design with Coarse-Grained Reconfigurable Array Architecture Ganghee Lee and Kiyoung Choi Department of Electrical

More information

DYNAMICALLY SHIFTED SCRUBBING FOR FAST FPGA REPAIR. Leonardo P. Santos, Gabriel L. Nazar and Luigi Carro

DYNAMICALLY SHIFTED SCRUBBING FOR FAST FPGA REPAIR. Leonardo P. Santos, Gabriel L. Nazar and Luigi Carro DYNAMICALLY SHIFTED SCRUBBING FOR FAST FPGA REPAIR Leonardo P. Santos, Gabriel L. Nazar and Luigi Carro Instituto de Informática Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre, RS - Brazil

More information

High temperature / radiation hardened capable ARM Cortex -M0 microcontrollers

High temperature / radiation hardened capable ARM Cortex -M0 microcontrollers High temperature / radiation hardened capable ARM Cortex -M0 microcontrollers R. Bannatyne, D. Gifford, K. Klein, C. Merritt VORAGO Technologies 2028 E. Ben White Blvd., Suite #220, Austin, Texas, 78741,

More information

Dynamic Partial Reconfiguration of FPGA for SEU Mitigation and Area Efficiency

Dynamic Partial Reconfiguration of FPGA for SEU Mitigation and Area Efficiency Dynamic Partial Reconfiguration of FPGA for SEU Mitigation and Area Efficiency Vijay G. Savani, Akash I. Mecwan, N. P. Gajjar Institute of Technology, Nirma University vijay.savani@nirmauni.ac.in, akash.mecwan@nirmauni.ac.in,

More information

Multiple Event Upsets Aware FPGAs Using Protected Schemes

Multiple Event Upsets Aware FPGAs Using Protected Schemes Multiple Event Upsets Aware FPGAs Using Protected Schemes Costas Argyrides, Dhiraj K. Pradhan University of Bristol, Department of Computer Science Merchant Venturers Building, Woodland Road, Bristol,

More information

Vdd Programmable and Variation Tolerant FPGA Circuits and Architectures

Vdd Programmable and Variation Tolerant FPGA Circuits and Architectures Vdd Programmable and Variation Tolerant FPGA Circuits and Architectures Prof. Lei He EE Department, UCLA LHE@ee.ucla.edu Partially supported by NSF. Pathway to Power Efficiency and Variation Tolerance

More information

INTRODUCTION TO FPGA ARCHITECTURE

INTRODUCTION TO FPGA ARCHITECTURE 3/3/25 INTRODUCTION TO FPGA ARCHITECTURE DIGITAL LOGIC DESIGN (BASIC TECHNIQUES) a b a y 2input Black Box y b Functional Schematic a b y a b y a b y 2 Truth Table (AND) Truth Table (OR) Truth Table (XOR)

More information

EE219A Spring 2008 Special Topics in Circuits and Signal Processing. Lecture 9. FPGA Architecture. Ranier Yap, Mohamed Ali.

EE219A Spring 2008 Special Topics in Circuits and Signal Processing. Lecture 9. FPGA Architecture. Ranier Yap, Mohamed Ali. EE219A Spring 2008 Special Topics in Circuits and Signal Processing Lecture 9 FPGA Architecture Ranier Yap, Mohamed Ali Annoucements Homework 2 posted Due Wed, May 7 Now is the time to turn-in your Hw

More information

Error Resilience in Digital Integrated Circuits

Error Resilience in Digital Integrated Circuits Error Resilience in Digital Integrated Circuits Heinrich T. Vierhaus BTU Cottbus-Senftenberg Outline 1. Introduction 2. Faults and errors in nano-electronic circuits 3. Classical fault tolerant computing

More information

OUTLINE Introduction Power Components Dynamic Power Optimization Conclusions

OUTLINE Introduction Power Components Dynamic Power Optimization Conclusions OUTLINE Introduction Power Components Dynamic Power Optimization Conclusions 04/15/14 1 Introduction: Low Power Technology Process Hardware Architecture Software Multi VTH Low-power circuits Parallelism

More information

Lecture 41: Introduction to Reconfigurable Computing

Lecture 41: Introduction to Reconfigurable Computing inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 41: Introduction to Reconfigurable Computing Michael Le, Sp07 Head TA April 30, 2007 Slides Courtesy of Hayden So, Sp06 CS61c Head TA Following

More information

Robust System Design with MPSoCs Unique Opportunities

Robust System Design with MPSoCs Unique Opportunities Robust System Design with MPSoCs Unique Opportunities Subhasish Mitra Robust Systems Group Departments of Electrical Eng. & Computer Sc. Stanford University Email: subh@stanford.edu Acknowledgment: Stanford

More information

On Supporting Adaptive Fault Tolerant at Run-Time with Virtual FPGAs

On Supporting Adaptive Fault Tolerant at Run-Time with Virtual FPGAs On Supporting Adaptive Fault Tolerant at Run-Time with Virtual FPAs K. Siozios 1, D. Soudris 1 and M. Hüebner 2 1 School of ECE, National Technical University of Athens reece Email: {ksiop, dsoudris}@microlab.ntua.gr

More information

ECE 636. Reconfigurable Computing. Lecture 2. Field Programmable Gate Arrays I

ECE 636. Reconfigurable Computing. Lecture 2. Field Programmable Gate Arrays I ECE 636 Reconfigurable Computing Lecture 2 Field Programmable Gate Arrays I Overview Anti-fuse and EEPROM-based devices Contemporary SRAM devices - Wiring - Embedded New trends - Single-driver wiring -

More information

ESE532: System-on-a-Chip Architecture. Today. Message. Graph Cycles. Preclass 1. Reminder

ESE532: System-on-a-Chip Architecture. Today. Message. Graph Cycles. Preclass 1. Reminder ESE532: System-on-a-Chip Architecture Day 8: September 26, 2018 Spatial Computations Today Graph Cycles (from Day 7) Accelerator Pipelines FPGAs Zynq Computational Capacity 1 2 Message Custom accelerators

More information

Outline. Parity-based ECC and Mechanism for Detecting and Correcting Soft Errors in On-Chip Communication. Outline

Outline. Parity-based ECC and Mechanism for Detecting and Correcting Soft Errors in On-Chip Communication. Outline Parity-based ECC and Mechanism for Detecting and Correcting Soft Errors in On-Chip Communication Khanh N. Dang and Xuan-Tu Tran Email: khanh.n.dang@vnu.edu.vn VNU Key Laboratory for Smart Integrated Systems

More information

Programmable Logic Devices FPGA Architectures II CMPE 415. Overview This set of notes introduces many of the features available in the FPGAs of today.

Programmable Logic Devices FPGA Architectures II CMPE 415. Overview This set of notes introduces many of the features available in the FPGAs of today. Overview This set of notes introduces many of the features available in the FPGAs of today. The majority use SRAM based configuration cells, which allows fast reconfiguation. Allows new design ideas to

More information

CMP annual meeting, January 23 rd, 2014

CMP annual meeting, January 23 rd, 2014 J.P.Nozières, G.Prenat, B.Dieny and G.Di Pendina Spintec, UMR-8191, CEA-INAC/CNRS/UJF-Grenoble1/Grenoble-INP, Grenoble, France CMP annual meeting, January 23 rd, 2014 ReRAM V wr0 ~-0.9V V wr1 V ~0.9V@5ns

More information

EITF35: Introduction to Structured VLSI Design

EITF35: Introduction to Structured VLSI Design EITF35: Introduction to Structured VLSI Design Part 1.1.2: Introduction (Digital VLSI Systems) Liang Liu liang.liu@eit.lth.se 1 Outline Why Digital? History & Roadmap Device Technology & Platforms System

More information

Reconfigurable Computing. Introduction

Reconfigurable Computing. Introduction Reconfigurable Computing Tony Givargis and Nikil Dutt Introduction! Reconfigurable computing, a new paradigm for system design Post fabrication software personalization for hardware computation Traditionally

More information

Hamming FSM with Xilinx Blind Scrubbing - Trick or Treat

Hamming FSM with Xilinx Blind Scrubbing - Trick or Treat Hamming FSM with Xilinx Blind Scrubbing - Trick or Treat Jano Gebelein Infrastructure and Computer Systems in Data Processing (IRI) Frankfurt University Germany January 31st, 2012 Mannheim, Germany 1 Outline

More information

Improving the Fault Tolerance of a Computer System with Space-Time Triple Modular Redundancy

Improving the Fault Tolerance of a Computer System with Space-Time Triple Modular Redundancy Improving the Fault Tolerance of a Computer System with Space-Time Triple Modular Redundancy Wei Chen, Rui Gong, Fang Liu, Kui Dai, Zhiying Wang School of Computer, National University of Defense Technology,

More information

Verilog for High Performance

Verilog for High Performance Verilog for High Performance Course Description This course provides all necessary theoretical and practical know-how to write synthesizable HDL code through Verilog standard language. The course goes

More information

An Architecture for Fail-Silent Operation of FPGAs and Configurable SoCs

An Architecture for Fail-Silent Operation of FPGAs and Configurable SoCs An Architecture for Fail-Silent Operation of FPGAs and Configurable SoCs Lee W. Lerner and Charles E. Stroud Dept. of Electrical and Computer Engineering Auburn University Auburn, AL, USA Abstract We present

More information

IMPLICATIONS OF RELIABILITY ENHANCEMENT ACHIEVED BY FAULT AVOIDANCE ON DYNAMICALLY RECONFIGURABLE ARCHITECTURES

IMPLICATIONS OF RELIABILITY ENHANCEMENT ACHIEVED BY FAULT AVOIDANCE ON DYNAMICALLY RECONFIGURABLE ARCHITECTURES 20 21st International Conference on Field Programmable Logic and Applications IMPLICATIONS OF RELIABILITY ENHANCEMENT ACHIEVED BY FAULT AVOIDANCE ON DYNAMICALLY RECONFIGURABLE ARCHITECTURES Hiroaki KONOURA,

More information

Ultra Low-Cost Defect Protection for Microprocessor Pipelines

Ultra Low-Cost Defect Protection for Microprocessor Pipelines Ultra Low-Cost Defect Protection for Microprocessor Pipelines Smitha Shyam Kypros Constantinides Sujay Phadke Valeria Bertacco Todd Austin Advanced Computer Architecture Lab University of Michigan Key

More information

Hardware Design Environments. Dr. Mahdi Abbasi Computer Engineering Department Bu-Ali Sina University

Hardware Design Environments. Dr. Mahdi Abbasi Computer Engineering Department Bu-Ali Sina University Hardware Design Environments Dr. Mahdi Abbasi Computer Engineering Department Bu-Ali Sina University Outline Welcome to COE 405 Digital System Design Design Domains and Levels of Abstractions Synthesis

More information

Mitigation of SCU and MCU effects in SRAM-based FPGAs: placement and routing solutions

Mitigation of SCU and MCU effects in SRAM-based FPGAs: placement and routing solutions Mitigation of SCU and MCU effects in SRAM-based FPGAs: placement and routing solutions Niccolò Battezzati Filomena Decuzzi Luca Sterpone Massimo Violante 1 Goal To provide solutions for increasing the

More information

Self-Repair for Robust System Design. Yanjing Li Intel Labs Stanford University

Self-Repair for Robust System Design. Yanjing Li Intel Labs Stanford University Self-Repair for Robust System Design Yanjing Li Intel Labs Stanford University 1 Hardware Failures: Major Concern Permanent: our focus Temporary 2 Tolerating Permanent Hardware Failures Detection Diagnosis

More information

Ascenium: A Continuously Reconfigurable Architecture. Robert Mykland Founder/CTO August, 2005

Ascenium: A Continuously Reconfigurable Architecture. Robert Mykland Founder/CTO August, 2005 Ascenium: A Continuously Reconfigurable Architecture Robert Mykland Founder/CTO robert@ascenium.com August, 2005 Ascenium: A Continuously Reconfigurable Processor Continuously reconfigurable approach provides:

More information

Reliable Physical Unclonable Function based on Asynchronous Circuits

Reliable Physical Unclonable Function based on Asynchronous Circuits Reliable Physical Unclonable Function based on Asynchronous Circuits Kyung Ki Kim Department of Electronic Engineering, Daegu University, Gyeongbuk, 38453, South Korea. E-mail: kkkim@daegu.ac.kr Abstract

More information

Analysis of ALU Designs Aim for Improvement in Processor Efficiency and Capability from

Analysis of ALU Designs Aim for Improvement in Processor Efficiency and Capability from Analysis of ALU Designs Aim f Improvement in Process Efficiency and Capability from 2-26 Linnette Martinez Department of Electrical and Computer Engineering University of Central Flida Orlando, FL 3286-2362

More information

A 1-GHz Configurable Processor Core MeP-h1

A 1-GHz Configurable Processor Core MeP-h1 A 1-GHz Configurable Processor Core MeP-h1 Takashi Miyamori, Takanori Tamai, and Masato Uchiyama SoC Research & Development Center, TOSHIBA Corporation Outline Background Pipeline Structure Bus Interface

More information

CS310 Embedded Computer Systems. Maeng

CS310 Embedded Computer Systems. Maeng 1 INTRODUCTION (PART II) Maeng Three key embedded system technologies 2 Technology A manner of accomplishing a task, especially using technical processes, methods, or knowledge Three key technologies for

More information

Massively Parallel Computing on Silicon: SIMD Implementations. V.M.. Brea Univ. of Santiago de Compostela Spain

Massively Parallel Computing on Silicon: SIMD Implementations. V.M.. Brea Univ. of Santiago de Compostela Spain Massively Parallel Computing on Silicon: SIMD Implementations V.M.. Brea Univ. of Santiago de Compostela Spain GOAL Give an overview on the state-of of-the- art of Digital on-chip CMOS SIMD Solutions,

More information

DATAPATH ARCHITECTURE FOR RELIABLE COMPUTING IN NANO-SCALE TECHNOLOGY

DATAPATH ARCHITECTURE FOR RELIABLE COMPUTING IN NANO-SCALE TECHNOLOGY DATAPATH ARCHITECTURE FOR RELIABLE COMPUTING IN NANO-SCALE TECHNOLOGY A thesis work submitted to the faculty of San Francisco State University In partial fulfillment of The requirements for The Degree

More information

Introduction to FPGA Design with Vivado High-Level Synthesis. UG998 (v1.0) July 2, 2013

Introduction to FPGA Design with Vivado High-Level Synthesis. UG998 (v1.0) July 2, 2013 Introduction to FPGA Design with Vivado High-Level Synthesis Notice of Disclaimer The information disclosed to you hereunder (the Materials ) is provided solely for the selection and use of Xilinx products.

More information

M.TECH VLSI IEEE TITLES

M.TECH VLSI IEEE TITLES 2016 2017 M.TECH VLSI IEEE TITLES S.NO TITLES DOMAIN 1 A Fixed-Point Squaring Algorithm Using an Implicit Arbitrary Radix Number System 2 An Improved Design of a Reversible Fault Tolerant LUT-Based FPGA

More information

FABRICATION TECHNOLOGIES

FABRICATION TECHNOLOGIES FABRICATION TECHNOLOGIES DSP Processor Design Approaches Full custom Standard cell** higher performance lower energy (power) lower per-part cost Gate array* FPGA* Programmable DSP Programmable general

More information

Fast SEU Detection and Correction in LUT Configuration Bits of SRAM-based FPGAs

Fast SEU Detection and Correction in LUT Configuration Bits of SRAM-based FPGAs Fast SEU Detection and Correction in LUT Configuration Bits of SRAM-based FPGAs Hamid R. Zarandi,2, Seyed Ghassem Miremadi, Costas Argyrides 2, Dhiraj K. Pradhan 2 Department of Computer Engineering, Sharif

More information

SAN FRANCISCO, CA, USA. Ediz Cetin & Oliver Diessel University of New South Wales

SAN FRANCISCO, CA, USA. Ediz Cetin & Oliver Diessel University of New South Wales SAN FRANCISCO, CA, USA Ediz Cetin & Oliver Diessel University of New South Wales Motivation & Background Objectives & Approach Our technique Results so far Work in progress CHANGE 2012 San Francisco, CA,

More information

ECE 587 Hardware/Software Co-Design Lecture 23 Hardware Synthesis III

ECE 587 Hardware/Software Co-Design Lecture 23 Hardware Synthesis III ECE 587 Hardware/Software Co-Design Spring 2018 1/28 ECE 587 Hardware/Software Co-Design Lecture 23 Hardware Synthesis III Professor Jia Wang Department of Electrical and Computer Engineering Illinois

More information

All MSEE students are required to take the following two core courses: Linear systems Probability and Random Processes

All MSEE students are required to take the following two core courses: Linear systems Probability and Random Processes MSEE Curriculum All MSEE students are required to take the following two core courses: 3531-571 Linear systems 3531-507 Probability and Random Processes The course requirements for students majoring in

More information

Design of Reusable Context Pipelining for Coarse Grained Reconfigurable Architecture

Design of Reusable Context Pipelining for Coarse Grained Reconfigurable Architecture Design of Reusable Context Pipelining for Coarse Grained Reconfigurable Architecture P. Murali 1 (M. Tech), Dr. S. Tamilselvan 2, S. Yazhinian (Research Scholar) 3 1, 2, 3 Dept of Electronics and Communication

More information

VLSI Design Automation

VLSI Design Automation VLSI Design Automation IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing Programmable PLA, FPGA Embedded systems Used in cars,

More information

More Course Information

More Course Information More Course Information Labs and lectures are both important Labs: cover more on hands-on design/tool/flow issues Lectures: important in terms of basic concepts and fundamentals Do well in labs Do well

More information

Testability Optimizations for A Time Multiplexed CPLD Implemented on Structured ASIC Technology

Testability Optimizations for A Time Multiplexed CPLD Implemented on Structured ASIC Technology ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 14, Number 4, 2011, 392 398 Testability Optimizations for A Time Multiplexed CPLD Implemented on Structured ASIC Technology Traian TULBURE

More information

RELIABILITY and RELIABLE DESIGN. Giovanni De Micheli Centre Systèmes Intégrés

RELIABILITY and RELIABLE DESIGN. Giovanni De Micheli Centre Systèmes Intégrés RELIABILITY and RELIABLE DESIGN Giovanni Centre Systèmes Intégrés Outline Introduction to reliable design Design for reliability Component redundancy Communication redundancy Data encoding and error correction

More information

Organic Computing. Dr. rer. nat. Christophe Bobda Prof. Dr. Rolf Wanka Department of Computer Science 12 Hardware-Software-Co-Design

Organic Computing. Dr. rer. nat. Christophe Bobda Prof. Dr. Rolf Wanka Department of Computer Science 12 Hardware-Software-Co-Design Dr. rer. nat. Christophe Bobda Prof. Dr. Rolf Wanka Department of Computer Science 12 Hardware-Software-Co-Design 1 Reconfigurable Computing Platforms 2 The Von Neumann Computer Principle In 1945, the

More information

System Verification of Hardware Optimization Based on Edge Detection

System Verification of Hardware Optimization Based on Edge Detection Circuits and Systems, 2013, 4, 293-298 http://dx.doi.org/10.4236/cs.2013.43040 Published Online July 2013 (http://www.scirp.org/journal/cs) System Verification of Hardware Optimization Based on Edge Detection

More information

EReLA: A Low-Power Reliable Coarse-Grained Reconfigurable Architecture Processor anditsirradiationtests

EReLA: A Low-Power Reliable Coarse-Grained Reconfigurable Architecture Processor anditsirradiationtests 3250 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 61, NO. 6, DECEMBER 2014 EReLA: A Low-Power Reliable Coarse-Grained Reconfigurable Architecture Processor anditsirradiationtests Jun Yao, Mitsutoshi Saito,

More information

CONTACT: ,

CONTACT: , S.N0 Project Title Year of publication of IEEE base paper 1 Design of a high security Sha-3 keccak algorithm 2012 2 Error correcting unordered codes for asynchronous communication 2012 3 Low power multipliers

More information

A CAD Framework for MALIBU: An FPGA with Time-multiplexed Coarse-Grained Elements. David Grant

A CAD Framework for MALIBU: An FPGA with Time-multiplexed Coarse-Grained Elements. David Grant A CAD Framework for MALIBU: An FPGA with Time-multiplexed Coarse-Grained Elements David Grant Supervisor: Dr. Guy Lemieux FPGA 2011 -- Feb 28, 2011 Motivation Growing Industry Trend: Large FPGA Circuits

More information

SoCWire: a SpaceWire inspired fault tolerant Network on Chip approach for reconfigurable System-on-Chip in Space applications

SoCWire: a SpaceWire inspired fault tolerant Network on Chip approach for reconfigurable System-on-Chip in Space applications SoCWire: a SpaceWire inspired fault tolerant Network on Chip approach for reconfigurable System-on-Chip in Space applications Björn Osterloh Institute of Computer and Network Engineering TU Braunschweig,

More information

Efficient Systems. Micrel lab, DEIS, University of Bologna. Advisor

Efficient Systems. Micrel lab, DEIS, University of Bologna. Advisor Row-based Design Methodologies To Compensate Variability For Energy- Efficient Systems Micrel lab, DEIS, University of Bologna Mohammad Reza Kakoee PhD Student m.kakoee@unibo.it it Luca Benini Advisor

More information

March 20, 2002, San Jose Dominance of embedded Memories. Ulf Schlichtmann Slide 2. esram contents [Mbit] 100%

March 20, 2002, San Jose Dominance of embedded Memories. Ulf Schlichtmann Slide 2. esram contents [Mbit] 100% Goal and Outline IC designers: awareness of memory challenges isqed 2002 Memory designers: no surprises, hopefully! March 20, 2002, San Jose Dominance of embedded Memories Tomorrows High-quality SoCs Require

More information

Leso Martin, Musil Tomáš

Leso Martin, Musil Tomáš SAFETY CORE APPROACH FOR THE SYSTEM WITH HIGH DEMANDS FOR A SAFETY AND RELIABILITY DESIGN IN A PARTIALLY DYNAMICALLY RECON- FIGURABLE FIELD-PROGRAMMABLE GATE ARRAY (FPGA) Leso Martin, Musil Tomáš Abstract:

More information

A Time-Multiplexed FPGA

A Time-Multiplexed FPGA A Time-Multiplexed FPGA Steve Trimberger, Dean Carberry, Anders Johnson, Jennifer Wong Xilinx, nc. 2 100 Logic Drive San Jose, CA 95124 408-559-7778 steve.trimberger @ xilinx.com Abstract This paper describes

More information

An FPGA Based Adaptive Viterbi Decoder

An FPGA Based Adaptive Viterbi Decoder An FPGA Based Adaptive Viterbi Decoder Sriram Swaminathan Russell Tessier Department of ECE University of Massachusetts Amherst Overview Introduction Objectives Background Adaptive Viterbi Algorithm Architecture

More information

DRAF: A Low-Power DRAM-based Reconfigurable Acceleration Fabric

DRAF: A Low-Power DRAM-based Reconfigurable Acceleration Fabric DRAF: A Low-Power DRAM-based Reconfigurable Acceleration Fabric Mingyu Gao, Christina Delimitrou, Dimin Niu, Krishna Malladi, Hongzhong Zheng, Bob Brennan, Christos Kozyrakis ISCA June 22, 2016 FPGA-Based

More information

SP3Q.3. What makes it a good idea to put CRC computation and error-correcting code computation into custom hardware?

SP3Q.3. What makes it a good idea to put CRC computation and error-correcting code computation into custom hardware? Part II CST: SoC D/M: Quick exercises S3-S4 (examples sheet) Feb 2018 (rev a). This sheet contains short exercises for quick revision. Please also look at past exam questions and/or try some of the longer

More information

Chapter 8. Coping with Physical Failures, Soft Errors, and Reliability Issues. System-on-Chip EE141 Test Architectures Ch. 8 Physical Failures - P.

Chapter 8. Coping with Physical Failures, Soft Errors, and Reliability Issues. System-on-Chip EE141 Test Architectures Ch. 8 Physical Failures - P. Chapter 8 Coping with Physical Failures, Soft Errors, and Reliability Issues System-on-Chip EE141 Test Architectures Ch. 8 Physical Failures - P. 1 1 What is this chapter about? Gives an Overview of and

More information

An inversion/non-inversion dynamic optically. reconfigurable gate arrays.

An inversion/non-inversion dynamic optically. reconfigurable gate arrays. An inversion/non-inversion dynamic optically reconfigurable gate array VLSI Minoru Watanabe, Mao Nakajima, and Shinichi Kato Department of Electrical and Electronic Engineering, Shizuoka University, 3-5-1

More information

Programmable Logic. Any other approaches?

Programmable Logic. Any other approaches? Programmable Logic So far, have only talked about PALs (see 22V10 figure next page). What is the next step in the evolution of PLDs? More gates! How do we get more gates? We could put several PALs on one

More information

FPGA for Software Engineers

FPGA for Software Engineers FPGA for Software Engineers Course Description This course closes the gap between hardware and software engineers by providing the software engineer all the necessary FPGA concepts and terms. The course

More information

FeRAM Circuit Technology for System on a Chip

FeRAM Circuit Technology for System on a Chip FeRAM Circuit Technology for System on a Chip K. Asari 1,2,4, Y. Mitsuyama 2, T. Onoye 2, I. Shirakawa 2, H. Hirano 1, T. Honda 1, T. Otsuki 1, T. Baba 3, T. Meng 4 1 Matsushita Electronics Corp., Osaka,

More information

DESIGN AND ANALYSIS OF SOFTWARE FAULTTOLERANT TECHNIQUES FOR SOFTCORE PROCESSORS IN RELIABLE SRAM-BASED FPGA

DESIGN AND ANALYSIS OF SOFTWARE FAULTTOLERANT TECHNIQUES FOR SOFTCORE PROCESSORS IN RELIABLE SRAM-BASED FPGA DESIGN AND ANALYSIS OF SOFTWARE FAULTTOLERANT TECHNIQUES FOR SOFTCORE PROCESSORS IN RELIABLE SRAM-BASED FPGA 1 Vatsya Tiwari M.Tech Student Department of computer science & engineering Abstract. This paper

More information

Fine-Grain Redundancy Techniques for High- Reliable SRAM FPGA`S in Space Environment: A Brief Survey

Fine-Grain Redundancy Techniques for High- Reliable SRAM FPGA`S in Space Environment: A Brief Survey Fine-Grain Redundancy Techniques for High- Reliable SRAM FPGA`S in Space Environment: A Brief Survey T.Srinivas Reddy 1, J.Santosh 2, J.Prabhakar 3 Assistant Professor, Department of ECE, MREC, Hyderabad,

More information

What Comes Next? Reconfigurable Nanoelectronics and Defect Tolerance. Technology Shifts. Size Matters. Ops/sec/$

What Comes Next? Reconfigurable Nanoelectronics and Defect Tolerance. Technology Shifts. Size Matters. Ops/sec/$ Reconfigurable Nanoelectronics and Defect Tolerance Seth Copen Goldstein Carnegie Mellon University seth@cs.cmu.edu HLDVT 11/13/03 HLDVT '03 (11/13/03) 2003 Seth Copen Goldstein 1 1.E+11 1.E+10 1.E+09

More information

Design and Test Solutions for Networks-on-Chip. Jin-Ho Ahn Hoseo University

Design and Test Solutions for Networks-on-Chip. Jin-Ho Ahn Hoseo University Design and Test Solutions for Networks-on-Chip Jin-Ho Ahn Hoseo University Topics Introduction NoC Basics NoC-elated esearch Topics NoC Design Procedure Case Studies of eal Applications NoC-Based SoC Testing

More information

Implementing Tile-based Chip Multiprocessors with GALS Clocking Styles

Implementing Tile-based Chip Multiprocessors with GALS Clocking Styles Implementing Tile-based Chip Multiprocessors with GALS Clocking Styles Zhiyi Yu, Bevan Baas VLSI Computation Lab, ECE Department University of California, Davis, USA Outline Introduction Timing issues

More information

DRAF: A Low-Power DRAM-based Reconfigurable Acceleration Fabric

DRAF: A Low-Power DRAM-based Reconfigurable Acceleration Fabric DRAF: A Low-Power DRAM-based Reconfigurable Acceleration Fabric Mingyu Gao, Christina Delimitrou, Dimin Niu, Krishna Malladi, Hongzhong Zheng, Bob Brennan, Christos Kozyrakis ISCA June 22, 2016 FPGA-Based

More information

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011

FPGA for Complex System Implementation. National Chiao Tung University Chun-Jen Tsai 04/14/2011 FPGA for Complex System Implementation National Chiao Tung University Chun-Jen Tsai 04/14/2011 About FPGA FPGA was invented by Ross Freeman in 1989 SRAM-based FPGA properties Standard parts Allowing multi-level

More information

COEN-4730 Computer Architecture Lecture 12. Testing and Design for Testability (focus: processors)

COEN-4730 Computer Architecture Lecture 12. Testing and Design for Testability (focus: processors) 1 COEN-4730 Computer Architecture Lecture 12 Testing and Design for Testability (focus: processors) Cristinel Ababei Dept. of Electrical and Computer Engineering Marquette University 1 Outline Testing

More information

An Energy-Efficient Scan Chain Architecture to Reliable Test of VLSI Chips

An Energy-Efficient Scan Chain Architecture to Reliable Test of VLSI Chips An Energy-Efficient Scan Chain Architecture to Reliable Test of VLSI Chips M. Saeedmanesh 1, E. Alamdar 1, E. Ahvar 2 Abstract Scan chain (SC) is a widely used technique in recent VLSI chips to ease the

More information

VLSI Design Automation

VLSI Design Automation VLSI Design Automation IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing Programmable PLA, FPGA Embedded systems Used in cars,

More information

VLSI Design Automation. Calcolatori Elettronici Ing. Informatica

VLSI Design Automation. Calcolatori Elettronici Ing. Informatica VLSI Design Automation 1 Outline Technology trends VLSI Design flow (an overview) 2 IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing

More information

Field Program mable Gate Arrays

Field Program mable Gate Arrays Field Program mable Gate Arrays M andakini Patil E H E P g r o u p D H E P T I F R SERC school NISER, Bhubaneshwar Nov 7-27 2017 Outline Digital electronics Short history of programmable logic devices

More information

Introduction to reconfigurable systems

Introduction to reconfigurable systems Introduction to reconfigurable systems Reconfigurable system (RS)= any system whose sub-system configurations can be changed or modified after fabrication Reconfigurable computing (RC) is commonly used

More information

Ultra Low Power (ULP) Challenge in System Architecture Level

Ultra Low Power (ULP) Challenge in System Architecture Level Ultra Low Power (ULP) Challenge in System Architecture Level - New architectures for 45-nm, 32-nm era ASP-DAC 2007 Designers' Forum 9D: Panel Discussion: Top 10 Design Issues Toshinori Sato (Kyushu U)

More information

Single Event Upset Mitigation Techniques for SRAM-based FPGAs

Single Event Upset Mitigation Techniques for SRAM-based FPGAs Single Event Upset Mitigation Techniques for SRAM-based FPGAs Fernanda de Lima, Luigi Carro, Ricardo Reis Universidade Federal do Rio Grande do Sul PPGC - Instituto de Informática - DELET Caixa Postal

More information

Chip, Heal Thyself. The BulletProof Project

Chip, Heal Thyself. The BulletProof Project Chip, Heal Thyself Todd Austin Advanced Computer Architecture Lab University of Michigan With Prof. Valeria Bertacco, Prof. Scott Mahlke Kypros Constantinides, Smitha Shyam Mojtaba Mehrara, Mona Attariyan,

More information

Indian Silicon Technologies 2013

Indian Silicon Technologies 2013 SI.No Topics IEEE YEAR 1. An RFID Based Solution for Real-Time Patient Surveillance and data Processing Bio- Metric System using FPGA 2. Real-time Binary Shape Matching System Based on FPGA 3. An Optimized

More information

ECEN 449 Microprocessor System Design. FPGAs and Reconfigurable Computing

ECEN 449 Microprocessor System Design. FPGAs and Reconfigurable Computing ECEN 449 Microprocessor System Design FPGAs and Reconfigurable Computing Some of the notes for this course were developed using the course notes for ECE 412 from the University of Illinois, Urbana-Champaign

More information

l Some materials from various sources! Soma 1! l Apply a signal, measure output, compare l 32-bit adder test example:!

l Some materials from various sources! Soma 1! l Apply a signal, measure output, compare l 32-bit adder test example:! Acknowledgements! Introduction and Overview! Mani Soma! l Some materials from various sources! n Dr. Phil Nigh, IBM! n Principles of Testing Electronic Systems by S. Mourad and Y. Zorian! n Essentials

More information

Workspace for '4-FPGA' Page 1 (row 1, column 1)

Workspace for '4-FPGA' Page 1 (row 1, column 1) Workspace for '4-FPGA' Page 1 (row 1, column 1) Workspace for '4-FPGA' Page 2 (row 2, column 1) Workspace for '4-FPGA' Page 3 (row 3, column 1) ECEN 449 Microprocessor System Design FPGAs and Reconfigurable

More information

Device And Architecture Co-Optimization for FPGA Power Reduction

Device And Architecture Co-Optimization for FPGA Power Reduction 54.2 Device And Architecture Co-Optimization for FPGA Power Reduction Lerong Cheng, Phoebe Wong, Fei Li, Yan Lin, and Lei He Electrical Engineering Department University of California, Los Angeles, CA

More information

23. Digital Baseband Design

23. Digital Baseband Design 23. Digital Baseband Design Algorithm-to-VLSI Circuit Refinement (Floating Point) Tradeoff (SNR Loss, BER) (Fixed Point) VHDL, Verilog VHDL, Verilog Memory Control For I=0 to I=15 Sum = Sum + array[i]

More information

The Xilinx XC6200 chip, the software tools and the board development tools

The Xilinx XC6200 chip, the software tools and the board development tools The Xilinx XC6200 chip, the software tools and the board development tools What is an FPGA? Field Programmable Gate Array Fully programmable alternative to a customized chip Used to implement functions

More information

Synthesis at different abstraction levels

Synthesis at different abstraction levels Synthesis at different abstraction levels System Level Synthesis Clustering. Communication synthesis. High-Level Synthesis Resource or time constrained scheduling Resource allocation. Binding Register-Transfer

More information

MicroCore Labs. MCL51 Application Note. Lockstep. Quad Modular Redundant System

MicroCore Labs. MCL51 Application Note. Lockstep. Quad Modular Redundant System MicroCore Labs MCL51 Application Note Lockstep Quad Modular Redundant System Introduction: This application note describes a Lockstep Quad Modular Redundant (QMR) system that employs the microsequencer-based

More information

Digital Signal Processor Core Technology

Digital Signal Processor Core Technology The World Leader in High Performance Signal Processing Solutions Digital Signal Processor Core Technology Abhijit Giri Satya Simha November 4th 2009 Outline Introduction to SHARC DSP ADSP21469 ADSP2146x

More information

FPGA based Design of Low Power Reconfigurable Router for Network on Chip (NoC)

FPGA based Design of Low Power Reconfigurable Router for Network on Chip (NoC) FPGA based Design of Low Power Reconfigurable Router for Network on Chip (NoC) D.Udhayasheela, pg student [Communication system],dept.ofece,,as-salam engineering and technology, N.MageshwariAssistant Professor

More information