ECE 2035 Programming HW/SW Systems Spring problems, 6 pages Exam Three 10 April 2013

Size: px
Start display at page:

Download "ECE 2035 Programming HW/SW Systems Spring problems, 6 pages Exam Three 10 April 2013"

Transcription

1 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate the pages of the exam. For maximum credit, show your work. Good Luck! Your Name (please print) total

2 Problem 1 (4 parts, 25 points) Complete the following C code by following the steps below: int Square(int x) return(x*x); int Cube(int y) return(exp(y, 3)); int Quad(int z) return(square(z)*square(z)); typedef int My_Math(int a, int lim, int b) { Function Pointers Walk(a, lim, ); /* part B */...rest of My_Math's body... int Walk(int Init, int Limit, ){ /* part C */ int i; for (i = Init; i<limit; i=s(i)) printf( %d\n, GlobalArray[i]); /* line P, part D */...rest of body of Walk... Part A (9 points) Create a local variable, called Stride, in My_Math that is a function pointer that points to Cube if b>100 and to Quad otherwise. Use a typedef to define the function pointer type. Part B (2 points) Pass this function pointer to the subroutine Walk as its third parameter. Part C (2 points) Complete the subroutine Walk by filling in type and name information for its third parameter which should be named S. Part D (12 points) Suppose Square, Cube, and Quad are defined in instruction memory starting at the following addresses: Square: 1000 Cube: 1200 Quad: 1600 The stack has the state shown below when My_Math is called. Complete the activation frames for My_Math and Walk and show the state of the stack after line P in Walk is executed twice. Symbolically label stack entries and give their values if they are known. a 2 lim b 105 SP & FP: 9900 RV N/A 2

3 Problem 2 (5 parts, 25 points) Heap Management Below is a snapshot of heap storage. The heap has been allocated contiguously beginning at 6000, with no gaps between objects. Heap management maintains a sorted free list to implement a best-fit strategy for reusing freed objects. The heap pointer is 6152 and the free pointer is addr value addr value addr value addr value addr value addr value Part A (4 points) Assuming the heap has been allocated contiguously beginning at 6000, with no gaps between objects, circle all object size words in the map above. Part B (6 points) List the address of the first data word in each object in the free list in order, starting with the head of the free list. Addresses of Objects on Free List (in order): Part C (3 points) Based on the free list created in part B, if an object of size 28 bytes is allocated, what address will be returned? How many bytes of slack (if any) will result? Address: Slack: Part D (6 points) Suppose the next instruction is free(ptr), where ptr = List all the changes to memory that will result: Address New Value Part E (6 points) Based on the free list after part D, if an object of size 22 bytes is allocated, what address will be returned? How many bytes of slack (if any) will result? Address: Slack: List all the changes to memory that will result: Address New Value 3

4 Problem 3 (7 parts, 25 points) Complete the following C code by following the steps below: typedef struct Med { float Temp; int HDL; int BMI; struct Med *Next; Med; Med *Records = NULL; void Add_Patient(float T, int C, int B){ Dynamic Allocation on Heap ; /* part B*/ if ( ){ /* part D */ printf( Error: Insufficient space. ); exit(1); ; /* part E*/ ; /* part E*/ ; /* part E*/ ; /* part F*/ ; /* part F*/ Part A (3 pts) Add a local variable called NewPatient to Add_Patient that is a pointer to a Med object. Part B (4 points) Allocate space for a Med structure using malloc and make NewPatient point to the object allocated. Be sure to include appropriate type casting to avoid type errors. Part C (4 points) How many bytes are allocated in Part B for the Med structure, excluding its size header? bytes Part D (3 pts) Fill in the test for whether malloc found enough space which controls the print statement. Part E (4 pts) Initialize the fields (Temp, HDL, BMI) of the newly allocated Med object to the values of the 3 input parameters (T, C, B, respectively). Part F (4 points) Push the newly allocated Med object onto the front of the list of Med objects pointed to by the global variable Records. Part G (3 points) Suppose a subroutine Delete_Records is implemented only by the statement: Records = NULL; What common memory problem would this create? 4

5 Problem 4 (4 parts, 25 points) Tile Puzzle Suppose you were given a C program P1-1.c that solved the tile puzzle assigned in Project 1. Recall that the tiles are stored in memory in row-column order and each tile is stored as a word of packed bytes, where each byte encodes the color of a triangle in the tile according to the following ordering: North: Byte 3 West: Byte 2 South: Byte 1 East: Byte 0 Part A (3 points) If you wanted to test the compiled program for the best case running time on a 5 by 5 grid, what value would you select for number of colors? Briefly explain why. #colors: Why? Part B (3 points) If you wanted to test the compiled program for the worst case running time on a 5 by 5 grid, what value would you select for number of colors? Briefly explain why. #colors: Why? Part C (10 points) Suppose register $5 contains the address of tile I in the puzzle and register $6 contains the row length (number of tiles in a row). Write MIPS code to branch to the label SouthOK when tile I's south triangle has the same color as one of the triangles in tile I's southern neighbor; otherwise, it should branch to NoFit. Assume tile I is not on the bottom row of the tile grid. Use a minimum number of static and dynamic instructions and modify only registers $1, $2, and $3. label instruction comment Part D (9 points) Write MIPS code to take the tile whose address is in $5, rotate it 90 degrees clockwise and store the result back in the address given in $5. Use a minimum number of instructions and registers. label instruction comment 5

6 MIPS Instruction Set (core) instruction example meaning arithmetic add add $1,$2,$3 $1 = $2 + $3 subtract sub $1,$2,$3 $1 = $2 - $3 add immediate addi $1,$2,100 $1 = $ add unsigned addu $1,$2,$3 $1 = $2 + $3 subtract unsigned subu $1,$2,$3 $1 = $2 - $3 add immediate unsigned addiu $1,$2,100 $1 = $ set if less than slt $1, $2, $3 if ($2 < $3), $1 = 1 else $1 = 0 set if less than immediate slti $1, $2, 100 if ($2 < 100), $1 = 1 else $1 = 0 set if less than unsigned sltu $1, $2, $3 if ($2 < $3), $1 = 1 else $1 = 0 set if < immediate unsigned sltui $1, $2, 100 if ($2 < 100), $1 = 1 else $1 = 0 multiply mult $2,$3 Hi, Lo = $2 * $3, 64-bit signed product multiply unsigned multu $2,$3 Hi, Lo = $2 * $3, 64-bit unsigned product divide div $2,$3 Lo = $2 / $3, Hi = $2 mod $3 divide unsigned divu $2,$3 Lo = $2 / $3, Hi = $2 mod $3, unsigned transfer move from Hi mfhi $1 $1 = Hi move from Lo mflo $1 $1 = Lo load upper immediate lui $1,100 $1 = 100 x 2 16 logic and and $1,$2,$3 $1 = $2 & $3 or or $1,$2,$3 $1 = $2 $3 and immediate andi $1,$2,100 $1 = $2 & 100 or immediate ori $1,$2,100 $1 = $2 100 nor nor $1,$2,$3 $1 = not($2 $3) xor xor $1, $2, $3 $1 = $2 $3 xor immediate xori $1, $2, 255 $1 = $2 255 shift shift left logical sll $1,$2,5 $1 = $2 << 5 (logical) shift left logical variable sllv $1,$2,$3 $1 = $2 << $3 (logical), variable shift amt shift right logical srl $1,$2,5 $1 = $2 >> 5 (logical) shift right logical variable srlv $1,$2,$3 $1 = $2 >> $3 (logical), variable shift amt shift right arithmetic sra $1,$2,5 $1 = $2 >> 5 (arithmetic) shift right arithmetic variable srav $1,$2,$3 $1 = $2 >> $3 (arithmetic), variable shift amt memory load word lw $1, 1000($2) $1 = memory [$2+1000] store word sw $1, 1000($2) memory [$2+1000] = $1 load byte lb $1, 1002($2) $1 = memory[$2+1002] in least sig. byte load byte unsigned lbu $1, 1002($2) $1 = memory[$2+1002] in least sig. byte store byte sb $1, 1002($2) memory[$2+1002] = $1 (byte modified only) branch branch if equal beq $1,$2,100 if ($1 = $2), PC = PC (100*4) branch if not equal bne $1,$2,100 if ($1 $2), PC = PC (100*4) jump jump j PC = 10000*4 jump register jr $31 PC = $31 jump and link jal $31 = PC + 4; PC = 10000*4 6

ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013

ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

ECE 2035 Programming HW/SW Systems Spring problems, 6 pages Exam Two 11 March Your Name (please print) total

ECE 2035 Programming HW/SW Systems Spring problems, 6 pages Exam Two 11 March Your Name (please print) total Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

ECE 2035 Programming HW/SW Systems Spring problems, 6 pages Exam One 4 February Your Name (please print clearly)

ECE 2035 Programming HW/SW Systems Spring problems, 6 pages Exam One 4 February Your Name (please print clearly) Your Name (please print clearly) This exam will be conducted according to the Georgia Tech Honor Code. I pledge to neither give nor receive unauthorized assistance on this exam and to abide by all provisions

More information

ECE 2035 A Programming Hw/Sw Systems Fall problems, 8 pages Final Exam 9 December 2015

ECE 2035 A Programming Hw/Sw Systems Fall problems, 8 pages Final Exam 9 December 2015 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

ECE 2035 A Programming Hw/Sw Systems Fall problems, 8 pages Final Exam 8 December 2014

ECE 2035 A Programming Hw/Sw Systems Fall problems, 8 pages Final Exam 8 December 2014 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam Two 23 October Your Name (please print clearly) Signed.

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam Two 23 October Your Name (please print clearly) Signed. Your Name (please print clearly) This exam will be conducted according to the Georgia Tech Honor Code. I pledge to neither give nor receive unauthorized assistance on this exam and to abide by all provisions

More information

ECE 2035 A Programming Hw/Sw Systems Spring problems, 8 pages Final Exam 29 April 2015

ECE 2035 A Programming Hw/Sw Systems Spring problems, 8 pages Final Exam 29 April 2015 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

Q1: /30 Q2: /25 Q3: /45. Total: /100

Q1: /30 Q2: /25 Q3: /45. Total: /100 ECE 2035(A) Programming for Hardware/Software Systems Fall 2013 Exam One September 19 th 2013 This is a closed book, closed note texam. Calculators are not permitted. Please work the exam in pencil and

More information

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam Two 21 October 2016

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam Two 21 October 2016 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam One 19 September 2012

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam One 19 September 2012 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

ECE 2035 Programming Hw/Sw Systems Fall problems, 10 pages Final Exam 9 December 2013

ECE 2035 Programming Hw/Sw Systems Fall problems, 10 pages Final Exam 9 December 2013 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

ECE 2035 A Programming Hw/Sw Systems Fall problems, 10 pages Final Exam 14 December 2016

ECE 2035 A Programming Hw/Sw Systems Fall problems, 10 pages Final Exam 14 December 2016 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam One 22 September Your Name (please print clearly) Signed.

ECE 2035 Programming HW/SW Systems Fall problems, 6 pages Exam One 22 September Your Name (please print clearly) Signed. Your Name (please print clearly) This exam will be conducted according to the Georgia Tech Honor Code. I pledge to neither give nor receive unauthorized assistance on this exam and to abide by all provisions

More information

MIPS Instruction Reference

MIPS Instruction Reference Page 1 of 9 MIPS Instruction Reference This is a description of the MIPS instruction set, their meanings, syntax, semantics, and bit encodings. The syntax given for each instruction refers to the assembly

More information

Reduced Instruction Set Computer (RISC)

Reduced Instruction Set Computer (RISC) Reduced Instruction Set Computer (RISC) Reduced Instruction Set Computer (RISC) Focuses on reducing the number and complexity of instructions of the machine. Reduced number of cycles needed per instruction.

More information

F. Appendix 6 MIPS Instruction Reference

F. Appendix 6 MIPS Instruction Reference F. Appendix 6 MIPS Instruction Reference Note: ALL immediate values should be sign extended. Exception: For logical operations immediate values should be zero extended. After extensions, you treat them

More information

Week 10: Assembly Programming

Week 10: Assembly Programming Week 10: Assembly Programming Arithmetic instructions Instruction Opcode/Function Syntax Operation add 100000 $d, $s, $t $d = $s + $t addu 100001 $d, $s, $t $d = $s + $t addi 001000 $t, $s, i $t = $s +

More information

Assembly Programming

Assembly Programming Designing Computer Systems Assembly Programming 08:34:48 PM 23 August 2016 AP-1 Scott & Linda Wills Designing Computer Systems Assembly Programming In the early days of computers, assembly programming

More information

Reduced Instruction Set Computer (RISC)

Reduced Instruction Set Computer (RISC) Reduced Instruction Set Computer (RISC) Focuses on reducing the number and complexity of instructions of the ISA. RISC Goals RISC: Simplify ISA Simplify CPU Design Better CPU Performance Motivated by simplifying

More information

MIPS Reference Guide

MIPS Reference Guide MIPS Reference Guide Free at PushingButtons.net 2 Table of Contents I. Data Registers 3 II. Instruction Register Formats 4 III. MIPS Instruction Set 5 IV. MIPS Instruction Set (Extended) 6 V. SPIM Programming

More information

Computer Architecture. The Language of the Machine

Computer Architecture. The Language of the Machine Computer Architecture The Language of the Machine Instruction Sets Basic ISA Classes, Addressing, Format Administrative Matters Operations, Branching, Calling conventions Break Organization All computers

More information

Question 0. Do not turn this page until you have received the signal to start. (Please fill out the identification section above) Good Luck!

Question 0. Do not turn this page until you have received the signal to start. (Please fill out the identification section above) Good Luck! CSC B58 Winter 2017 Final Examination Duration 2 hours and 50 minutes Aids allowed: none Last Name: Student Number: UTORid: First Name: Question 0. [1 mark] Read and follow all instructions on this page,

More information

Q1: /14 Q2: /12 Q3: /8 Q4: /8. Total: /42

Q1: /14 Q2: /12 Q3: /8 Q4: /8. Total: /42 ECE 2035(B) Programming for Hardware/Software Systems Spring 2013 Exam Three April 10 th 2013 Name: Q1: /14 Q2: /12 Q3: /8 Q4: /8 Total: /42 1/10 For functional call related questions, let s assume the

More information

MIPS Instruction Set

MIPS Instruction Set MIPS Instruction Set Prof. James L. Frankel Harvard University Version of 7:12 PM 3-Apr-2018 Copyright 2018, 2017, 2016, 201 James L. Frankel. All rights reserved. CPU Overview CPU is an acronym for Central

More information

SPIM Instruction Set

SPIM Instruction Set SPIM Instruction Set This document gives an overview of the more common instructions used in the SPIM simulator. Overview The SPIM simulator implements the full MIPS instruction set, as well as a large

More information

The MIPS Instruction Set Architecture

The MIPS Instruction Set Architecture The MIPS Set Architecture CPS 14 Lecture 5 Today s Lecture Admin HW #1 is due HW #2 assigned Outline Review A specific ISA, we ll use it throughout semester, very similar to the NiosII ISA (we will use

More information

Computer Architecture. MIPS Instruction Set Architecture

Computer Architecture. MIPS Instruction Set Architecture Computer Architecture MIPS Instruction Set Architecture Instruction Set Architecture An Abstract Data Type Objects Registers & Memory Operations Instructions Goal of Instruction Set Architecture Design

More information

TSK3000A - Generic Instructions

TSK3000A - Generic Instructions TSK3000A - Generic Instructions Frozen Content Modified by Admin on Sep 13, 2017 Using the core set of assembly language instructions for the TSK3000A as building blocks, a number of generic instructions

More information

ECE 15B Computer Organization Spring 2010

ECE 15B Computer Organization Spring 2010 ECE 15B Computer Organization Spring 2010 Dmitri Strukov Lecture 7: Procedures I Partially adapted from Computer Organization and Design, 4 th edition, Patterson and Hennessy, and classes taught by and

More information

CS 61c: Great Ideas in Computer Architecture

CS 61c: Great Ideas in Computer Architecture MIPS Functions July 1, 2014 Review I RISC Design Principles Smaller is faster: 32 registers, fewer instructions Keep it simple: rigid syntax, fixed instruction length MIPS Registers: $s0-$s7,$t0-$t9, $0

More information

101 Assembly. ENGR 3410 Computer Architecture Mark L. Chang Fall 2009

101 Assembly. ENGR 3410 Computer Architecture Mark L. Chang Fall 2009 101 Assembly ENGR 3410 Computer Architecture Mark L. Chang Fall 2009 What is assembly? 79 Why are we learning assembly now? 80 Assembly Language Readings: Chapter 2 (2.1-2.6, 2.8, 2.9, 2.13, 2.15), Appendix

More information

ECE Exam I February 19 th, :00 pm 4:25pm

ECE Exam I February 19 th, :00 pm 4:25pm ECE 3056 Exam I February 19 th, 2015 3:00 pm 4:25pm 1. The exam is closed, notes, closed text, and no calculators. 2. The Georgia Tech Honor Code governs this examination. 3. There are 4 questions and

More information

MIPS ISA. 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support

MIPS ISA. 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support Components of an ISA EE 357 Unit 11 MIPS ISA 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support SUBtract instruc. vs. NEGate + ADD instrucs. 3. Registers accessible

More information

ECE232: Hardware Organization and Design. Computer Organization - Previously covered

ECE232: Hardware Organization and Design. Computer Organization - Previously covered ECE232: Hardware Organization and Design Part 6: MIPS Instructions II http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Computer Organization

More information

EEM 486: Computer Architecture. Lecture 2. MIPS Instruction Set Architecture

EEM 486: Computer Architecture. Lecture 2. MIPS Instruction Set Architecture EEM 486: Computer Architecture Lecture 2 MIPS Instruction Set Architecture EEM 486 Overview Instruction Representation Big idea: stored program consequences of stored program Instructions as numbers Instruction

More information

ECE 2035 Programming HW/SW Systems Fall problems, 5 pages Exam Three 19 November 2014

ECE 2035 Programming HW/SW Systems Fall problems, 5 pages Exam Three 19 November 2014 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

Outline. EEL-4713 Computer Architecture Multipliers and shifters. Deriving requirements of ALU. MIPS arithmetic instructions

Outline. EEL-4713 Computer Architecture Multipliers and shifters. Deriving requirements of ALU. MIPS arithmetic instructions Outline EEL-4713 Computer Architecture Multipliers and shifters Multiplication and shift registers Chapter 3, section 3.4 Next lecture Division, floating-point 3.5 3.6 EEL-4713 Ann Gordon-Ross.1 EEL-4713

More information

Overview. Introduction to the MIPS ISA. MIPS ISA Overview. Overview (2)

Overview. Introduction to the MIPS ISA. MIPS ISA Overview. Overview (2) Introduction to the MIPS ISA Overview Remember that the machine only understands very basic instructions (machine instructions) It is the compiler s job to translate your high-level (e.g. C program) into

More information

MIPS Instruction Format

MIPS Instruction Format MIPS Instruction Format MIPS uses a 32-bit fixed-length instruction format. only three different instruction word formats: There are Register format Op-code Rs Rt Rd Function code 000000 sssss ttttt ddddd

More information

Programming the processor

Programming the processor CSC258 Week 9 Logistics This week: Lab 7 is the last Logisim DE2 lab. Next week: Lab 8 will be assembly. For assembly labs you can work individually or in pairs. No matter how you do it, the important

More information

ECE 2035 A Programming Hw/Sw Systems Fall problems, 10 pages Final Exam Solutions 14 December 2016

ECE 2035 A Programming Hw/Sw Systems Fall problems, 10 pages Final Exam Solutions 14 December 2016 Problem 1 (20 points) Optimization Perform at least five standard compiler optimizations on the following C code fragment by writing the optimized version (in C) to the right. Assume cube, g, and h are

More information

CPS311 - COMPUTER ORGANIZATION. A bit of history

CPS311 - COMPUTER ORGANIZATION. A bit of history CPS311 - COMPUTER ORGANIZATION A Brief Introduction to the MIPS Architecture A bit of history The MIPS architecture grows out of an early 1980's research project at Stanford University. In 1984, MIPS computer

More information

CSc 256 Midterm (green) Fall 2018

CSc 256 Midterm (green) Fall 2018 CSc 256 Midterm (green) Fall 2018 NAME: Problem 1 (5 points): Suppose we are tracing a C/C++ program using a debugger such as gdb. The code showing all function calls looks like this: main() { bat(5);

More information

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA MIPS ISA. In a CPU. (vonneumann) Processor Organization

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA MIPS ISA. In a CPU. (vonneumann) Processor Organization CISC 662 Graduate Computer Architecture Lecture 4 - ISA MIPS ISA Michela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer Architecture,

More information

Mark Redekopp, All rights reserved. EE 357 Unit 11 MIPS ISA

Mark Redekopp, All rights reserved. EE 357 Unit 11 MIPS ISA EE 357 Unit 11 MIPS ISA Components of an ISA 1. Data and Address Size 8-, 16-, 32-, 64-bit 2. Which instructions does the processor support SUBtract instruc. vs. NEGate + ADD instrucs. 3. Registers accessible

More information

Mips Code Examples Peter Rounce

Mips Code Examples Peter Rounce Mips Code Examples Peter Rounce P.Rounce@cs.ucl.ac.uk Some C Examples Assignment : int j = 10 ; // space must be allocated to variable j Possibility 1: j is stored in a register, i.e. register $2 then

More information

M2 Instruction Set Architecture

M2 Instruction Set Architecture M2 Instruction Set Architecture Module Outline Addressing modes. Instruction classes. MIPS-I ISA. High level languages, Assembly languages and object code. Translating and starting a program. Subroutine

More information

ECE468 Computer Organization & Architecture. MIPS Instruction Set Architecture

ECE468 Computer Organization & Architecture. MIPS Instruction Set Architecture ECE468 Computer Organization & Architecture MIPS Instruction Set Architecture ECE468 Lec4.1 MIPS R2000 / R3000 Registers 32-bit machine --> Programmable storage 2^32 x bytes 31 x 32-bit GPRs (R0 = 0) 32

More information

Computer Architecture Experiment

Computer Architecture Experiment Computer Architecture Experiment Jiang Xiaohong College of Computer Science & Engineering Zhejiang University Architecture Lab_jxh 1 Topics 0 Basic Knowledge 1 Warm up 2 simple 5-stage of pipeline CPU

More information

MIPS Assembly Language. Today s Lecture

MIPS Assembly Language. Today s Lecture MIPS Assembly Language Computer Science 104 Lecture 6 Homework #2 Midterm I Feb 22 (in class closed book) Outline Assembly Programming Reading Chapter 2, Appendix B Today s Lecture 2 Review: A Program

More information

MIPS%Assembly% E155%

MIPS%Assembly% E155% MIPS%Assembly% E155% Outline MIPS Architecture ISA Instruction types Machine codes Procedure call Stack 2 The MIPS Register Set Name Register Number Usage $0 0 the constant value 0 $at 1 assembler temporary

More information

Branch Addressing. Jump Addressing. Target Addressing Example. The University of Adelaide, School of Computer Science 28 September 2015

Branch Addressing. Jump Addressing. Target Addressing Example. The University of Adelaide, School of Computer Science 28 September 2015 Branch Addressing Branch instructions specify Opcode, two registers, target address Most branch targets are near branch Forward or backward op rs rt constant or address 6 bits 5 bits 5 bits 16 bits PC-relative

More information

Today s Lecture. MIPS Assembly Language. Review: What Must be Specified? Review: A Program. Review: MIPS Instruction Formats

Today s Lecture. MIPS Assembly Language. Review: What Must be Specified? Review: A Program. Review: MIPS Instruction Formats Today s Lecture Homework #2 Midterm I Feb 22 (in class closed book) MIPS Assembly Language Computer Science 14 Lecture 6 Outline Assembly Programming Reading Chapter 2, Appendix B 2 Review: A Program Review:

More information

Lec 10: Assembler. Announcements

Lec 10: Assembler. Announcements Lec 10: Assembler Kavita Bala CS 3410, Fall 2008 Computer Science Cornell University Announcements HW 2 is out Due Wed after Fall Break Robot-wide paths PA 1 is due next Wed Don t use incrementor 4 times

More information

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA

CISC 662 Graduate Computer Architecture. Lecture 4 - ISA CISC 662 Graduate Computer Architecture Lecture 4 - ISA Michela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer Architecture,

More information

Arithmetic for Computers

Arithmetic for Computers MIPS Arithmetic Instructions Cptr280 Dr Curtis Nelson Arithmetic for Computers Operations on integers Addition and subtraction; Multiplication and division; Dealing with overflow; Signed vs. unsigned numbers.

More information

2. dead code elimination (declaration and initialization of z) 3. common subexpression elimination (temp1 = j + g + h)

2. dead code elimination (declaration and initialization of z) 3. common subexpression elimination (temp1 = j + g + h) Problem 1 (20 points) Compilation Perform at least five standard compiler optimizations on the following C code fragment by writing the optimized version (in C) to the right. Assume f is a pure function

More information

CSc 256 Midterm 2 Spring 2012

CSc 256 Midterm 2 Spring 2012 CSc 256 Midterm 2 Spring 2012 NAME: 1a) You are given this MIPS assembly language instruction (i.e., pseudo- instruction): ble $12, 0x20004880, there Translate this MIPS instruction to an efficient sequence

More information

Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers

Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers CSE 675.02: Introduction to Computer Architecture MIPS Processor Memory Instruction Set Architecture of MIPS Processor CPU Arithmetic Logic unit Registers $0 $31 Multiply divide Coprocessor 1 (FPU) Registers

More information

5/17/2012. Recap from Last Time. CSE 2021: Computer Organization. The RISC Philosophy. Levels of Programming. Stored Program Computers

5/17/2012. Recap from Last Time. CSE 2021: Computer Organization. The RISC Philosophy. Levels of Programming. Stored Program Computers CSE 2021: Computer Organization Recap from Last Time load from disk High-Level Program Lecture-2 Code Translation-1 Registers, Arithmetic, logical, jump, and branch instructions MIPS to machine language

More information

Recap from Last Time. CSE 2021: Computer Organization. Levels of Programming. The RISC Philosophy 5/19/2011

Recap from Last Time. CSE 2021: Computer Organization. Levels of Programming. The RISC Philosophy 5/19/2011 CSE 2021: Computer Organization Recap from Last Time load from disk High-Level Program Lecture-3 Code Translation-1 Registers, Arithmetic, logical, jump, and branch instructions MIPS to machine language

More information

Part II Instruction-Set Architecture. Jan Computer Architecture, Instruction-Set Architecture Slide 1

Part II Instruction-Set Architecture. Jan Computer Architecture, Instruction-Set Architecture Slide 1 Part II Instruction-Set Architecture Jan. 211 Computer Architecture, Instruction-Set Architecture Slide 1 MiniMIPS Instruction Formats op rs rt 31 25 2 15 1 5 R 6 bits 5 bits 5 bits 5 bits I J Opcode Source

More information

ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5

ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5 ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5 MIPS/SPIM General Purpose Registers Powers of Two 0 $zero all bits are zero 16 $s0 local variable 1 $at assembler temporary 17 $s1 local

More information

CSc 256 Midterm 2 Fall 2011

CSc 256 Midterm 2 Fall 2011 CSc 256 Midterm 2 Fall 2011 NAME: 1a) You are given a MIPS branch instruction: x: beq $12, $0, y The address of the label "y" is 0x400468. The memory location at "x" contains: address contents 0x40049c

More information

Chapter 2. Computer Abstractions and Technology. Lesson 4: MIPS (cont )

Chapter 2. Computer Abstractions and Technology. Lesson 4: MIPS (cont ) Chapter 2 Computer Abstractions and Technology Lesson 4: MIPS (cont ) Logical Operations Instructions for bitwise manipulation Operation C Java MIPS Shift left >>> srl Bitwise

More information

ECE 2035 Programming HW/SW Systems Fall problems, 5 pages Exam Three 20 November 2013

ECE 2035 Programming HW/SW Systems Fall problems, 5 pages Exam Three 20 November 2013 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

Lecture 2. Instructions: Language of the Computer (Chapter 2 of the textbook)

Lecture 2. Instructions: Language of the Computer (Chapter 2 of the textbook) Lecture 2 Instructions: Language of the Computer (Chapter 2 of the textbook) Instructions: tell computers what to do Chapter 2 Instructions: Language of the Computer 2 Introduction Chapter 2.1 Chapter

More information

CSc 256 Final Fall 2016

CSc 256 Final Fall 2016 CSc 256 Final Fall 2016 NAME: Problem 1 (25 points) Translate the C/C++ function func() into MIPS assembly language. The prototype is: void func(int arg0, int *arg1); arg0-arg1 are in $a0- $a1 respectively.

More information

Assembly Language. Prof. Dr. Antônio Augusto Fröhlich. Sep 2006

Assembly Language. Prof. Dr. Antônio Augusto Fröhlich.   Sep 2006 Sep 2006 Prof. Antônio Augusto Fröhlich (http://www.lisha.ufsc.br) 33 Assembly Language Prof. Dr. Antônio Augusto Fröhlich guto@lisha.ufsc.br http://www.lisha.ufsc.br/~guto Sep 2006 Sep 2006 Prof. Antônio

More information

Concocting an Instruction Set

Concocting an Instruction Set Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Read: Chapter 2.1-2.7 L03 Instruction Set 1 A General-Purpose Computer The von

More information

Examples of branch instructions

Examples of branch instructions Examples of branch instructions Beq rs,rt,target #go to target if rs = rt Beqz rs, target #go to target if rs = 0 Bne rs,rt,target #go to target if rs!= rt Bltz rs, target #go to target if rs < 0 etc.

More information

ECE 2035 A Programming Hw/Sw Systems Spring problems, 8 pages Final Exam Solutions 29 April 2015

ECE 2035 A Programming Hw/Sw Systems Spring problems, 8 pages Final Exam Solutions 29 April 2015 Problem 1 (20 points) Optimization Perform at least five standard compiler optimizations on the following C code fragment by writing the optimized version (in C) to the right. Assume f and g are pure functions

More information

We will study the MIPS assembly language as an exemplar of the concept.

We will study the MIPS assembly language as an exemplar of the concept. MIPS Assembly Language 1 We will study the MIPS assembly language as an exemplar of the concept. MIPS assembly instructions each consist of a single token specifying the command to be carried out, and

More information

A General-Purpose Computer The von Neumann Model. Concocting an Instruction Set. Meaning of an Instruction. Anatomy of an Instruction

A General-Purpose Computer The von Neumann Model. Concocting an Instruction Set. Meaning of an Instruction. Anatomy of an Instruction page 1 Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... A General-Purpose Computer The von Neumann Model Many architectural approaches

More information

EE 109 Unit 13 MIPS Instruction Set. Instruction Set Architecture (ISA) Components of an ISA INSTRUCTION SET OVERVIEW

EE 109 Unit 13 MIPS Instruction Set. Instruction Set Architecture (ISA) Components of an ISA INSTRUCTION SET OVERVIEW 1 2 EE 109 Unit 13 MIPS Instruction Set Architecting a vocabulary for the HW INSTRUCTION SET OVERVIEW 3 4 Instruction Set Architecture (ISA) Defines the of the processor and memory system Instruction set

More information

Flow of Control -- Conditional branch instructions

Flow of Control -- Conditional branch instructions Flow of Control -- Conditional branch instructions You can compare directly Equality or inequality of two registers One register with 0 (>,

More information

INSTRUCTION SET COMPARISONS

INSTRUCTION SET COMPARISONS INSTRUCTION SET COMPARISONS MIPS SPARC MOTOROLA REGISTERS: INTEGER 32 FIXED WINDOWS 32 FIXED FP SEPARATE SEPARATE SHARED BRANCHES: CONDITION CODES NO YES NO COMPARE & BR. YES NO YES A=B COMP. & BR. YES

More information

CMPE324 Computer Architecture Lecture 2

CMPE324 Computer Architecture Lecture 2 CMPE324 Computer Architecture Lecture 2.1 What is Computer Architecture? Software Hardware Application (Netscape) Operating System Compiler (Unix; Assembler Windows 9x) Processor Memory Datapath & Control

More information

MIPS R-format Instructions. Representing Instructions. Hexadecimal. R-format Example. MIPS I-format Example. MIPS I-format Instructions

MIPS R-format Instructions. Representing Instructions. Hexadecimal. R-format Example. MIPS I-format Example. MIPS I-format Instructions Representing Instructions Instructions are encoded in binary Called machine code MIPS instructions Encoded as 32-bit instruction words Small number of formats encoding operation code (opcode), register

More information

MIPS Assembly Language

MIPS Assembly Language MIPS Assembly Language Chapter 15 S. Dandamudi Outline MIPS architecture Registers Addressing modes MIPS instruction set Instruction format Data transfer instructions Arithmetic instructions Logical/shift/rotate/compare

More information

Computer Architecture Instruction Set Architecture part 2. Mehran Rezaei

Computer Architecture Instruction Set Architecture part 2. Mehran Rezaei Computer Architecture Instruction Set Architecture part 2 Mehran Rezaei Review Execution Cycle Levels of Computer Languages Stored Program Computer/Instruction Execution Cycle SPIM, a MIPS Interpreter

More information

Review: MIPS Organization

Review: MIPS Organization 1 MIPS Arithmetic Review: MIPS Organization Processor Memory src1 addr 5 src2 addr 5 dst addr 5 write data Register File registers ($zero - $ra) bits src1 data src2 data read/write addr 1 1100 2 30 words

More information

MACHINE LANGUAGE. To work with the machine, we need a translator.

MACHINE LANGUAGE. To work with the machine, we need a translator. LECTURE 2 Assembly MACHINE LANGUAGE As humans, communicating with a machine is a tedious task. We can t, for example, just say add this number and that number and store the result here. Computers have

More information

ECE 30 Introduction to Computer Engineering

ECE 30 Introduction to Computer Engineering ECE 30 Introduction to Computer Engineering Study Problems, Set #3 Spring 2015 Use the MIPS assembly instructions listed below to solve the following problems. arithmetic add add sub subtract addi add

More information

ECE 2035 A Programming Hw/Sw Systems Fall problems, 8 pages Final Exam Solutions 9 December 2015

ECE 2035 A Programming Hw/Sw Systems Fall problems, 8 pages Final Exam Solutions 9 December 2015 Problem 1 (20 pos) Optimization Perform at least five standard compiler optimizations on the following C code fragment by writing the optimized version (in C) to the right. Assume square, f, and g are

More information

Chapter 2A Instructions: Language of the Computer

Chapter 2A Instructions: Language of the Computer Chapter 2A Instructions: Language of the Computer Copyright 2009 Elsevier, Inc. All rights reserved. Instruction Set The repertoire of instructions of a computer Different computers have different instruction

More information

ECE 2035 Programming HW/SW Systems Spring problems, 5 pages Exam Three 8 April Your Name (please print clearly)

ECE 2035 Programming HW/SW Systems Spring problems, 5 pages Exam Three 8 April Your Name (please print clearly) Your Name (please print clearly) This exam will be conducted according to the Georgia Tech Honor Code. I pledge to neither give nor receive unauthorized assistance on this exam and to abide by all provisions

More information

Chapter 2. Instructions: Language of the Computer. Adapted by Paulo Lopes

Chapter 2. Instructions: Language of the Computer. Adapted by Paulo Lopes Chapter 2 Instructions: Language of the Computer Adapted by Paulo Lopes Instruction Set The repertoire of instructions of a computer Different computers have different instruction sets But with many aspects

More information

CSc 256 Final Spring 2011

CSc 256 Final Spring 2011 CSc 256 Final Spring 2011 NAME: Problem1: Convertthedecimalfloatingpointnumber 4.3toa32 bitfloat(inbinary)inieee 754standardrepresentation.Showworkforpartialcredit.10points Hint:IEEE754formatfor32 bitfloatsconsistsofs

More information

CS61c MIDTERM EXAM: 3/17/99

CS61c MIDTERM EXAM: 3/17/99 CS61c MIDTERM EXAM: 3/17/99 D. A. Patterson Last name Student ID number First name Login: cs61c- Please circle the last two letters of your login name. a b c d e f g h i j k l m n o p q r s t u v w x y

More information

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero

Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero Do-While Example In C++ do { z--; while (a == b); z = b; In assembly language loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero 25 Comparisons Set on less than (slt) compares its source registers

More information

EE 109 Unit 8 MIPS Instruction Set

EE 109 Unit 8 MIPS Instruction Set 1 EE 109 Unit 8 MIPS Instruction Set 2 Architecting a vocabulary for the HW INSTRUCTION SET OVERVIEW 3 Instruction Set Architecture (ISA) Defines the software interface of the processor and memory system

More information

Review. Lecture #9 MIPS Logical & Shift Ops, and Instruction Representation I Logical Operators (1/3) Bitwise Operations

Review. Lecture #9 MIPS Logical & Shift Ops, and Instruction Representation I Logical Operators (1/3) Bitwise Operations CS6C L9 MIPS Logical & Shift Ops, and Instruction Representation I () inst.eecs.berkeley.edu/~cs6c CS6C : Machine Structures Lecture #9 MIPS Logical & Shift Ops, and Instruction Representation I 25-9-28

More information

Midterm. Sticker winners: if you got >= 50 / 67

Midterm. Sticker winners: if you got >= 50 / 67 CSC258 Week 8 Midterm Class average: 4.2 / 67 (6%) Highest mark: 64.5 / 67 Tests will be return in office hours. Make sure your midterm mark is correct on MarkUs Solution posted on the course website.

More information

CS 61c: Great Ideas in Computer Architecture

CS 61c: Great Ideas in Computer Architecture Introduction to Assembly Language June 30, 2014 Review C Memory Layout Local variables disappear because the stack changes Global variables don t disappear because they are in static data Dynamic memory

More information

ECE 2035 A Programming HW/SW Systems Spring problems, 5 pages Exam Three 13 April Your Name (please print clearly)

ECE 2035 A Programming HW/SW Systems Spring problems, 5 pages Exam Three 13 April Your Name (please print clearly) Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand; do not leave your seat. Please work the exam in pencil and do not separate

More information

Review of instruction set architectures

Review of instruction set architectures Review of instruction set architectures Outline ISA and Assembly Language RISC vs. CISC Instruction Set Definition (MIPS) 2 ISA and assembly language Assembly language ISA Machine language 3 Assembly language

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University Instructions: Language of the Computer Operations and Operands of the Computer Hardware Signed and Unsigned Numbers Representing

More information

Instruction Set Architecture part 1 (Introduction) Mehran Rezaei

Instruction Set Architecture part 1 (Introduction) Mehran Rezaei Instruction Set Architecture part 1 (Introduction) Mehran Rezaei Overview Last Lecture s Review Execution Cycle Levels of Computer Languages Stored Program Computer/Instruction Execution Cycle SPIM, a

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN 5 th The Hardware/Software Interface Edition Chapter 2 Instructions: Language of the Computer 2.1 Introduction Instruction Set The repertoire of instructions of a computer

More information