A 256kb 6T Self-Tuning SRAM with Extended 0.38V-1.2V Operating Range using Multiple Read/Write Assists and V MIN Tracking Canary Sensors

Size: px
Start display at page:

Download "A 256kb 6T Self-Tuning SRAM with Extended 0.38V-1.2V Operating Range using Multiple Read/Write Assists and V MIN Tracking Canary Sensors"

Transcription

1 A 256kb 6T Self-Tuning SRAM with Extended 0.38V-1.2V Operating Range using Multiple Read/Write Assists and V MIN Tracking Canary Sensors *Arijit Banerjee, *Ningxi Liu, *Harsh N. Patel, *Benton H. Calhoun *Electrical and Computer Engineering University of Virginia, Charlottesville ** John Poulton, **C. Thomas Gray ** Nvidia, Durham, North Carolina

2 Motivation IoE market rapidly growing IoE= Internet of Everything 2

3 Motivation IoE market rapidly growing Battery recharge and replacement problems [Source: Google image search] IoE= Internet of Everything 3

4 Motivation IoE market rapidly growing Battery recharge and replacement problems [Source: Google image search] Soln: ULP wide-range DVS IoE= Internet of Everything, ULP= Ultra-low Power, DVS=Dynamic Voltage Scaling 4

5 Bottleneck in ULP wide-v DD Range V MIN guard-banding in 6Ts 5

6 Bottleneck in ULP wide-v DD Range V MIN guard-banding in 6Ts SRAM V MIN DVS bottleneck SoC V MIN bottleneck DC-DC V DD Core SRAM 6

7 Bottleneck in ULP wide-v DD Range V MIN guard-banding in 6Ts SRAM V MIN DVS bottleneck SoC DC-DC V DD Peri DC-DC V DD Array Dual rail SRAMs SoC level tradeoffs Core SRAM 7

8 Bottleneck in ULP wide-v DD Range V MIN guard-banding in 6Ts SRAM V MIN DVS bottleneck SoC DC-DC V DD Peri DC-DC V DD Array Dual rail SRAMs SoC level tradeoffs Core SRAM Different solutions across applications 8

9 SRAM V MIN Issues SRAM Solutions for ULP Applications Trading off performance and area Performance [Source : Cliff Hou, TSMC, ISSCC 2017] 9

10 Scope of 6T SRAM Improvements Peripheral assist for V MIN improvement Normalized SRAM write energy per cycle at V MIN % 30.7% 36% 51.5% TT SS SF FS FF 28nm TT_80C at V MIN (without assist) [Source: A. Banerjee. et al. ISQED 2014] 10

11 Scope of 6T SRAM Improvements Peripheral assist for V MIN improvement Lower V MIN guard-band Normalized SRAM write energy per cycle at V MIN Tracking V MIN could save energy 36% 30.7% 42.2% 51.5% TT SS SF FS FF 28nm TT_80C at V MIN (without assist) [Source: A. Banerjee. et al. ISQED 2014] 11

12 Scope of 6T SRAM Improvements Peripheral assist for V MIN improvement Lower V MIN guard-band Proposed Solution Combined assist 1 and Canary based V MIN tracking 2 reducing guardbanding Normalized SRAM write energy per cycle at V MIN Tracking V MIN could save energy 36% 30.7% 42.2% 51.5% TT SS SF FS FF 28nm TT_80C at V MIN (without assist) [ 1 E. Karl et al., 2012; 2 A. Banerjee et al. 2015] [Source: A. Banerjee. et al. ISQED 2014] 12

13 Agenda Canary SRAM Sensors Peripheral Assists and Reverse Assists 256kb Self-tuning SRAM Architecture Experiments & Results Comparison Conclusion 13

14 Canary SRAM Sensors [Source: Canary SRAM a sensor or detector 14

15 Canary SRAM Sensors [Source: Canary SRAM a sensor or detector Fails earlier than the population of SRAM bits 15

16 Canary SRAM Sensors [Source: Canary SRAM a sensor or detector Fails earlier than the population of SRAM bits Prior work was in SRAM DRV* tracking 1 1 [J. Wang, and B. H. Calhoun, CICC, 2007], *DRV=Data retention voltage; 16

17 Agenda Canary SRAM Sensors Peripheral Assists and Reverse Assists 256kb Self-tuning SRAM Architecture Experiments & Results Comparison Conclusion 17

18 Peripheral Assists and Reverse Assist What is a peripheral assist (PA) in SRAM context? An auxiliary circuit that improve read/write-ability 18

19 Peripheral Assists and Reverse Assist What is a peripheral assist (PA) in SRAM context? An auxiliary circuit that improve read/write-ability What is reverse assist? An auxiliary circuit that degrades read/write-ability SRAM bitcell + Reverse Assist = SRAM bitcell 19

20 Occurrences Example: SRAM write V MIN Distribution with Reverse Assist Settings (RAS) SRAM Write V MIN Distribution Canary write V MIN distribution shifts right with increasing RAS A B C Write V MIN [Source: A. Banerjee. et al. ISQED 2014] 20

21 Input and Output Design Metrics Input Metrics N Number of SRAM bits on a chip Y SRAM Core SRAM target yield C Number of canary SRAM bits F th Canary failure threshold condition V RA (RAS 1 ) Canary BL type reverse assist voltage Output Metrics P fc Canary SRAM chip failure probability [Source: A. Banerjee. et al. ISQED 2014] 1 RAS=Reverse assist settings; F th = Failure threshold condition 21

22 Agenda Canary SRAM Sensors Peripheral Assists and Reverse Assists 256kb Self-tuning SRAM Architecture Experiments & Results Comparison Conclusion 22

23 TRACK 256kb Self-tuning SRAM Architecture Off-Chip CLK_IN LDO V DD On-Chip LDO_CTRL Frequency to digital converter (FDC) V DDOUT 256kb 6T SRAM with canaries Assist Controller (ASC) Canary BIST (CBIST) Enable signals for WLB 1, NBL 2, VDDB 3 DIN, ADDR DOUT 1 WLB=Wordline Boost, 2 NBL=Negative Bitline, 3 VDDB=Vdd Boost. 23

24 V MIN Self-tuning Operation 24

25 Agenda Canary SRAM Sensors Peripheral Assists and Reverse Assists 256kb Self-tuning SRAM Architecture Experiments & Results Comparison Conclusion 25

26 Experiments and Results SRAM + PAs = Max 240mV V MIN improvements Does not eliminate V MIN guard-bands PA=Peripheral assists 26

27 V MIN Lowering using Combined Read/Write Assists 90 percentile worst case V MIN Measured CDF showing V MIN improvement w/ combined assist 27

28 Experiments and Results SRAM + PAs + Canaries = Arbitrary guardband lowering can save 1444X active power SRAM + PAs + Canaries = 12.4X leakage savings PA=Peripheral assists 28

29 Active Power Reduction using Combined Assist and Guard-band Lowering Canary Tracking Actual chip V MIN 90 percentile worst case V MIN Combined Assists Measured active power improvements 29

30 Active Power Reduction using Combined Assist and Guard-band Lowering Canary Tracking Actual chip V MIN 90 percentile worst case V MIN Combined Assists Canary Tracking Measured active power improvements 30

31 Active Power Reduction using Combined Assist and Guard-band Lowering Canary Tracking Actual chip V MIN 90 percentile worst case V MIN Combined Assists Canary Tracking Measured active power improvements 31

32 Leakage Power Reduction using Combined Assist and Canary Tracking Actual chip V MIN 1.2V Measured leakage power improvements 32

33 Canary V MIN 130nm Bulk Fth=1500, RAS=011 Measured canary V MIN tracking across frequencies 33

34 Canary V MIN 130nm Bulk Fth=1500, RAS=011 Measured canary V MIN tracking across frequencies 34

35 Canary V MIN 130nm Bulk Fth=1500, RAS=011 Measured canary V MIN tracking across frequencies 35

36 Scalability of Canary 32nm FDSOI Simulation results of canary based V MIN Tracking at TT corner 36

37 Overhead Canary area overhead only 0.77% (array) Combined assist area overhead 2.8% in SRAM Total system components without BISTs 1.8% Onetime canary tuning (matching the worst case SRAM bitcell) overhead Running ~ 90/282 cycles/v DD granularity per frequency/temp change for full 512b/2kb canaries 37

38 Agenda Canary SRAM Sensors Peripheral Assists and Reverse Assists 256kb Self-tuning SRAM Architecture Experiments & Results Comparison Conclusion 38

39 Comparison VLSI 15 This work ISSCC 15 VLSI 14 ISSCC 12 Memory Features DVS/VMIN Features Technology 14nm 130nm 28nm 180nm 22nm Cell type 8T 6T 6T 8T 6T Capacity 288kb 256kb 256kb 16KB 576KB DVS range 1-0.3V (700mV) V (850mV) V (320mV) V (1200mV) V (375mV) V MIN Tracking N Y N N N V MIN 0.3V 0.38V 0.58V 0.6V 0.7V Supply / Power Sub-VT Operation N Y N N N Max power Reduction X X - 39

40 Conclusion A wide DVS range (1.2V-0.38V) with lower SRAM V MIN (0.38V) achieved using multiple assists (write/read) across supplies Canary sensors track SRAM V MIN for margin guard-band minimization Demonstrated a reliable and an adaptive SRAM system selecting optimal V DD and assist techniques for ULP IoE enablement 40

41 Acknowledgements Advisor: Professor Ben Calhoun UVa Colleagues: Harsh Patel, Ningxi Liu, Farah Yahya, Divya A. K., Kevin Leach, Dilip Vasudevan, Terry Tigner Nvidia Colleagues: Tom Gray and John Poulton These projects was supported in part by NVIDIA through the DARPA PERFECT program 41

42 Thank You 42

6T- SRAM for Low Power Consumption. Professor, Dept. of ExTC, PRMIT &R, Badnera, Amravati, Maharashtra, India 1

6T- SRAM for Low Power Consumption. Professor, Dept. of ExTC, PRMIT &R, Badnera, Amravati, Maharashtra, India 1 6T- SRAM for Low Power Consumption Mrs. J.N.Ingole 1, Ms.P.A.Mirge 2 Professor, Dept. of ExTC, PRMIT &R, Badnera, Amravati, Maharashtra, India 1 PG Student [Digital Electronics], Dept. of ExTC, PRMIT&R,

More information

Optimizing Standby

Optimizing Standby Optimizing Power @ Standby Memory Benton H. Calhoun Jan M. Rabaey Chapter Outline Memory in Standby Voltage Scaling Body Biasing Periphery Memory Dominates Processor Area SRAM is a major source of static

More information

An Energy-Efficient Near/Sub-Threshold FPGA Interconnect Architecture Using Dynamic Voltage Scaling and Power-Gating

An Energy-Efficient Near/Sub-Threshold FPGA Interconnect Architecture Using Dynamic Voltage Scaling and Power-Gating An Energy-Efficient Near/Sub-Threshold FPGA Interconnect Architecture Using Dynamic Voltage Scaling and Power-Gating He Qi, Oluseyi Ayorinde, and Benton H. Calhoun Charles L. Brown Department of Electrical

More information

Lecture 14. Advanced Technologies on SRAM. Fundamentals of SRAM State-of-the-Art SRAM Performance FinFET-based SRAM Issues SRAM Alternatives

Lecture 14. Advanced Technologies on SRAM. Fundamentals of SRAM State-of-the-Art SRAM Performance FinFET-based SRAM Issues SRAM Alternatives Source: Intel the area ratio of SRAM over logic increases Lecture 14 Advanced Technologies on SRAM Fundamentals of SRAM State-of-the-Art SRAM Performance FinFET-based SRAM Issues SRAM Alternatives Reading:

More information

Ultra Low Power (ULP) Challenge in System Architecture Level

Ultra Low Power (ULP) Challenge in System Architecture Level Ultra Low Power (ULP) Challenge in System Architecture Level - New architectures for 45-nm, 32-nm era ASP-DAC 2007 Designers' Forum 9D: Panel Discussion: Top 10 Design Issues Toshinori Sato (Kyushu U)

More information

A 65nm 8T Sub-V t SRAM Employing Sense-Amplifier Redundancy

A 65nm 8T Sub-V t SRAM Employing Sense-Amplifier Redundancy A 65nm Sub-V t SRAM Employing Sense-Amplifier Redundancy Naveen Verma and Anantha Chandrakasan Massachusetts Institute of Technology ISSCC 2007 Energy Minimization Minimum energy V DD for logic results

More information

Memory Design I. Array-Structured Memory Architecture. Professor Chris H. Kim. Dept. of ECE.

Memory Design I. Array-Structured Memory Architecture. Professor Chris H. Kim. Dept. of ECE. Memory Design I Professor Chris H. Kim University of Minnesota Dept. of ECE chriskim@ece.umn.edu Array-Structured Memory Architecture 2 1 Semiconductor Memory Classification Read-Write Wi Memory Non-Volatile

More information

PICo Embedded High Speed Cache Design Project

PICo Embedded High Speed Cache Design Project PICo Embedded High Speed Cache Design Project TEAM LosTohmalesCalientes Chuhong Duan ECE 4332 Fall 2012 University of Virginia cd8dz@virginia.edu Andrew Tyler ECE 4332 Fall 2012 University of Virginia

More information

A 50% Lower Power ARM Cortex CPU using DDC Technology with Body Bias. David Kidd August 26, 2013

A 50% Lower Power ARM Cortex CPU using DDC Technology with Body Bias. David Kidd August 26, 2013 A 50% Lower Power ARM Cortex CPU using DDC Technology with Body Bias David Kidd August 26, 2013 1 HOTCHIPS 2013 Copyright 2013 SuVolta, Inc. All rights reserved. Agenda DDC transistor and PowerShrink platform

More information

Advanced Digital Integrated Circuits. Lecture 9: SRAM. Announcements. Homework 1 due on Wednesday Quiz #1 next Monday, March 7

Advanced Digital Integrated Circuits. Lecture 9: SRAM. Announcements. Homework 1 due on Wednesday Quiz #1 next Monday, March 7 EE241 - Spring 2011 Advanced Digital Integrated Circuits Lecture 9: SRAM Announcements Homework 1 due on Wednesday Quiz #1 next Monday, March 7 2 1 Outline Last lecture Variability This lecture SRAM 3

More information

EE241 - Spring 2007 Advanced Digital Integrated Circuits. Announcements

EE241 - Spring 2007 Advanced Digital Integrated Circuits. Announcements EE241 - Spring 2007 Advanced Digital Integrated Circuits Lecture 22: SRAM Announcements Homework #4 due today Final exam on May 8 in class Project presentations on May 3, 1-5pm 2 1 Class Material Last

More information

Power Reduction Techniques in the Memory System. Typical Memory Hierarchy

Power Reduction Techniques in the Memory System. Typical Memory Hierarchy Power Reduction Techniques in the Memory System Low Power Design for SoCs ASIC Tutorial Memories.1 Typical Memory Hierarchy On-Chip Components Control edram Datapath RegFile ITLB DTLB Instr Data Cache

More information

Millimeter-Scale Nearly Perpetual Sensor System with Stacked Battery and Solar Cells

Millimeter-Scale Nearly Perpetual Sensor System with Stacked Battery and Solar Cells 1 Millimeter-Scale Nearly Perpetual Sensor System with Stacked Battery and Solar Cells Gregory Chen, Matthew Fojtik, Daeyeon Kim, David Fick, Junsun Park, Mingoo Seok, Mao-Ter Chen, Zhiyoong Foo, Dennis

More information

DECOUPLING LOGIC BASED SRAM DESIGN FOR POWER REDUCTION IN FUTURE MEMORIES

DECOUPLING LOGIC BASED SRAM DESIGN FOR POWER REDUCTION IN FUTURE MEMORIES DECOUPLING LOGIC BASED SRAM DESIGN FOR POWER REDUCTION IN FUTURE MEMORIES M. PREMKUMAR 1, CH. JAYA PRAKASH 2 1 M.Tech VLSI Design, 2 M. Tech, Assistant Professor, Sir C.R.REDDY College of Engineering,

More information

1073 P a g e 2. LITERATURE REVIEW OF DIFFERENT SRAM CELLS

1073 P a g e 2. LITERATURE REVIEW OF DIFFERENT SRAM CELLS Read stability and Write ability analysis of different SRAM cell structures Ajay Gadhe*, Ujwal Shirode** *(Department of Electronics, North Maharashtra University, Jalgaon-425001) ** (Department of Electronics,

More information

Dynamic Write Limited Minimum Operating Voltage for Nanoscale SRAMs

Dynamic Write Limited Minimum Operating Voltage for Nanoscale SRAMs Dynamic Write Limited Minimum Operating Voltage for Nanoscale SRAMs Satyanand Nalam, Vikas Chandra, Robert C. Aitken, Benton H. Calhoun Dept. of ECE, University of Virginia, Charlottesville; ARM R&D, San

More information

Memory Design I. Semiconductor Memory Classification. Read-Write Memories (RWM) Memory Scaling Trend. Memory Scaling Trend

Memory Design I. Semiconductor Memory Classification. Read-Write Memories (RWM) Memory Scaling Trend. Memory Scaling Trend Array-Structured Memory Architecture Memory Design I Professor hris H. Kim University of Minnesota Dept. of EE chriskim@ece.umn.edu 2 Semiconductor Memory lassification Read-Write Memory Non-Volatile Read-Write

More information

DESIGN OF LOW POWER 8T SRAM WITH SCHMITT TRIGGER LOGIC

DESIGN OF LOW POWER 8T SRAM WITH SCHMITT TRIGGER LOGIC Journal of Engineering Science and Technology Vol. 9, No. 6 (2014) 670-677 School of Engineering, Taylor s University DESIGN OF LOW POWER 8T SRAM WITH SCHMITT TRIGGER LOGIC A. KISHORE KUMAR 1, *, D. SOMASUNDARESWARI

More information

Centip3De: A 64-Core, 3D Stacked, Near-Threshold System

Centip3De: A 64-Core, 3D Stacked, Near-Threshold System 1 1 1 Centip3De: A 64-Core, 3D Stacked, Near-Threshold System Ronald G. Dreslinski David Fick, Bharan Giridhar, Gyouho Kim, Sangwon Seo, Matthew Fojtik, Sudhir Satpathy, Yoonmyung Lee, Daeyeon Kim, Nurrachman

More information

A Write-Back-Free 2T1D Embedded. a Dual-Row-Access Low Power Mode.

A Write-Back-Free 2T1D Embedded. a Dual-Row-Access Low Power Mode. A Write-Back-Free 2T1D Embedded DRAM with Local Voltage Sensing and a Dual-Row-Access Low Power Mode Wei Zhang, Ki Chul Chun, Chris H. Kim University of Minnesota, Minneapolis, MN zhang758@umn.edu Outline

More information

Analysis of 8T SRAM with Read and Write Assist Schemes (UDVS) In 45nm CMOS Technology

Analysis of 8T SRAM with Read and Write Assist Schemes (UDVS) In 45nm CMOS Technology Analysis of 8T SRAM with Read and Write Assist Schemes (UDVS) In 45nm CMOS Technology Srikanth Lade 1, Pradeep Kumar Urity 2 Abstract : UDVS techniques are presented in this paper to minimize the power

More information

Efficient Systems. Micrel lab, DEIS, University of Bologna. Advisor

Efficient Systems. Micrel lab, DEIS, University of Bologna. Advisor Row-based Design Methodologies To Compensate Variability For Energy- Efficient Systems Micrel lab, DEIS, University of Bologna Mohammad Reza Kakoee PhD Student m.kakoee@unibo.it it Luca Benini Advisor

More information

Advanced Digital Integrated Circuits. Lecture 9: SRAM. Announcements. Homework 1 due on Wednesday Quiz #1 next Monday, March 7

Advanced Digital Integrated Circuits. Lecture 9: SRAM. Announcements. Homework 1 due on Wednesday Quiz #1 next Monday, March 7 EE24 - Spring 20 Advanced Digital Integrated Circuits Lecture 9: SRAM Announcements Homework due on Wednesday Quiz # next Monday, March 7 2 Outline Last lecture Variability This lecture SRAM 3 Practical

More information

Postsilicon Adaptation for Low-Power SRAM under Process Variation

Postsilicon Adaptation for Low-Power SRAM under Process Variation Postsilicon Calibration and Repair for Yield and Reliability Improvement Postsilicon Adaptation for Low-Power SRAM under Process Variation Minki Cho Georgia Institute of Technology Jason Schlessman Princeton

More information

ECE 6332 Design Review2: Register File Design Optimization with Virtual Prototyping Tool (ViPro)

ECE 6332 Design Review2: Register File Design Optimization with Virtual Prototyping Tool (ViPro) ECE 6332 Design Review2: Register File Design Optimization with Virtual Prototyping Tool (ViPro) Group member: Ningxi Liu (ECE6332) Email:nl6cg@virginia.edu Shawn Chen (ECE6332) Email:sc7cq@virginia.edu

More information

A novel DRAM architecture as a low leakage alternative for SRAM caches in a 3D interconnect context.

A novel DRAM architecture as a low leakage alternative for SRAM caches in a 3D interconnect context. A novel DRAM architecture as a low leakage alternative for SRAM caches in a 3D interconnect context. Anselme Vignon, Stefan Cosemans, Wim Dehaene K.U. Leuven ESAT - MICAS Laboratory Kasteelpark Arenberg

More information

Deep Sub-Micron Cache Design

Deep Sub-Micron Cache Design Cache Design Challenges in Deep Sub-Micron Process Technologies L2 COE Carl Dietz May 25, 2007 Deep Sub-Micron Cache Design Agenda Bitcell Design Array Design SOI Considerations Surviving in the corporate

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Print): 2279-0047 ISSN (Online): 2279-0055 International

More information

Design of Low Power Wide Gates used in Register File and Tag Comparator

Design of Low Power Wide Gates used in Register File and Tag Comparator www..org 1 Design of Low Power Wide Gates used in Register File and Tag Comparator Isac Daimary 1, Mohammed Aneesh 2 1,2 Department of Electronics Engineering, Pondicherry University Pondicherry, 605014,

More information

Low Power SRAM Techniques for Handheld Products

Low Power SRAM Techniques for Handheld Products Low Power SRAM Techniques for Handheld Products Rabiul Islam 5 S. Mopac, Suite 4 Austin, TX78746 5-4-45 rabiul.islam@intel.com Adam Brand Mission College Blvd Santa Clara, CA955 48-765-546 adam.d.brand@intel.com

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 938 LOW POWER SRAM ARCHITECTURE AT DEEP SUBMICRON CMOS TECHNOLOGY T.SANKARARAO STUDENT OF GITAS, S.SEKHAR DILEEP

More information

! Memory. " RAM Memory. " Serial Access Memories. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell. " Used in most commercial chips

! Memory.  RAM Memory.  Serial Access Memories. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell.  Used in most commercial chips ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec : April 5, 8 Memory: Periphery circuits Today! Memory " RAM Memory " Architecture " Memory core " SRAM " DRAM " Periphery " Serial Access Memories

More information

Session 11 Overview: SRAM MEMORY SUBCOMMITTEE

Session 11 Overview: SRAM MEMORY SUBCOMMITTEE ISSCC 2018 / SESSION 11 / SRAM / OVERVIEW Session 11 Overview: SRAM MEMORY SUBCOMMITTEE Session Chair: Jonathan Chang TSMC, Hsinchu, Taiwan Associate Chair: Chun Shiah Etron, Hsinchu, Taiwan Subcommittee

More information

Leakage Mitigation Techniques in Smartphone SoCs

Leakage Mitigation Techniques in Smartphone SoCs Leakage Mitigation Techniques in Smartphone SoCs 1 John Redmond 1 Broadcom International Symposium on Low Power Electronics and Design Smartphone Use Cases Power Device Convergence Diverse Use Cases Camera

More information

SOLVING THE DRAM SCALING CHALLENGE: RETHINKING THE INTERFACE BETWEEN CIRCUITS, ARCHITECTURE, AND SYSTEMS

SOLVING THE DRAM SCALING CHALLENGE: RETHINKING THE INTERFACE BETWEEN CIRCUITS, ARCHITECTURE, AND SYSTEMS SOLVING THE DRAM SCALING CHALLENGE: RETHINKING THE INTERFACE BETWEEN CIRCUITS, ARCHITECTURE, AND SYSTEMS Samira Khan MEMORY IN TODAY S SYSTEM Processor DRAM Memory Storage DRAM is critical for performance

More information

Simulation and Analysis of SRAM Cell Structures at 90nm Technology

Simulation and Analysis of SRAM Cell Structures at 90nm Technology Vol.1, Issue.2, pp-327-331 ISSN: 2249-6645 Simulation and Analysis of SRAM Cell Structures at 90nm Technology Sapna Singh 1, Neha Arora 2, Prof. B.P. Singh 3 (Faculty of Engineering and Technology, Mody

More information

Soft-error and Variability Resilience in Dependable VLSI Platform. Hidetoshi Onodera Kyoto University

Soft-error and Variability Resilience in Dependable VLSI Platform. Hidetoshi Onodera Kyoto University Soft-error and Variability Resilience in Dependable VLSI Platform Hidetoshi Onodera Kyoto University Outline: Soft-error and Variability Resilience 1 Background Overview: Dependable VLSI Platform Circuit-level

More information

Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms

Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms KEVIN K. CHANG, A. GİRAY YAĞLIKÇI, and SAUGATA GHOSE, Carnegie Mellon University

More information

Maximize energy efficiency in a normally-off system using NVRAM. Stéphane Gros Yeter Akgul

Maximize energy efficiency in a normally-off system using NVRAM. Stéphane Gros Yeter Akgul Maximize energy efficiency in a normally-off system using NVRAM Stéphane Gros Yeter Akgul Summary THE COMPANY THE CONTEXT THE TECHNOLOGY THE SYSTEM THE CO-DEVELOPMENT CONCLUSION May 31, 2017 2 Summary

More information

Survey on Stability of Low Power SRAM Bit Cells

Survey on Stability of Low Power SRAM Bit Cells International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 3 (2017) pp. 441-447 Research India Publications http://www.ripublication.com Survey on Stability of Low Power

More information

Design and Implementation of Low Leakage Power SRAM System Using Full Stack Asymmetric SRAM

Design and Implementation of Low Leakage Power SRAM System Using Full Stack Asymmetric SRAM Design and Implementation of Low Leakage Power SRAM System Using Full Stack Asymmetric SRAM Rajlaxmi Belavadi 1, Pramod Kumar.T 1, Obaleppa. R. Dasar 2, Narmada. S 2, Rajani. H. P 3 PG Student, Department

More information

Yield-driven Near-threshold SRAM Design

Yield-driven Near-threshold SRAM Design Yield-driven Near-threshold SRAM Design Gregory K. Chen, David Blaauw, Trevor Mudge, Dennis Sylvester Department of EECS University of Michigan Ann Arbor, MI 48109 grgkchen@umich.edu, blaauw@umich.edu,

More information

Low-Cost Inter-Linked Subarrays (LISA) Enabling Fast Inter-Subarray Data Movement in DRAM

Low-Cost Inter-Linked Subarrays (LISA) Enabling Fast Inter-Subarray Data Movement in DRAM Low-Cost Inter-Linked ubarrays (LIA) Enabling Fast Inter-ubarray Data Movement in DRAM Kevin Chang rashant Nair, Donghyuk Lee, augata Ghose, Moinuddin Qureshi, and Onur Mutlu roblem: Inefficient Bulk Data

More information

OUTLINE Introduction Power Components Dynamic Power Optimization Conclusions

OUTLINE Introduction Power Components Dynamic Power Optimization Conclusions OUTLINE Introduction Power Components Dynamic Power Optimization Conclusions 04/15/14 1 Introduction: Low Power Technology Process Hardware Architecture Software Multi VTH Low-power circuits Parallelism

More information

! Serial Access Memories. ! Multiported SRAM ! 5T SRAM ! DRAM. ! Shift registers store and delay data. ! Simple design: cascade of registers

! Serial Access Memories. ! Multiported SRAM ! 5T SRAM ! DRAM. ! Shift registers store and delay data. ! Simple design: cascade of registers ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 28: November 16, 2016 RAM Core Pt 2 Outline! Serial Access Memories! Multiported SRAM! 5T SRAM! DRAM Penn ESE 370 Fall 2016

More information

STUDY OF SRAM AND ITS LOW POWER TECHNIQUES

STUDY OF SRAM AND ITS LOW POWER TECHNIQUES INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN ISSN 0976 6464(Print)

More information

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering IP-SRAM ARCHITECTURE AT DEEP SUBMICRON CMOS TECHNOLOGY A LOW POWER DESIGN D. Harihara Santosh 1, Lagudu Ramesh Naidu 2 Assistant professor, Dept. of ECE, MVGR College of Engineering, Andhra Pradesh, India

More information

Research Scholar, Chandigarh Engineering College, Landran (Mohali), 2

Research Scholar, Chandigarh Engineering College, Landran (Mohali), 2 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Optimize Parity Encoding for Power Reduction in Content Addressable Memory Nisha Sharma, Manmeet Kaur 1 Research Scholar, Chandigarh

More information

Highly Reliable Radiation Hardened Memory Cell for FINFET Technology

Highly Reliable Radiation Hardened Memory Cell for FINFET Technology Highly Reliable Radiation Hardened Memory Cell for FINFET Technology Shantha Devi.P 1, Vennila.P 2, Ramya.M 3, Krishnakumar.S 4 1PG Scholar,Department of ECE,Theni Kammavar Sangam College of Technology,Tamilnadu,India.

More information

Seahawk Power-optimized implementation of High Performance Quad-core Cortex-A15 Processor

Seahawk Power-optimized implementation of High Performance Quad-core Cortex-A15 Processor Seahawk Power-optimized implementation of High Performance Quad-core Cortex-A15 Processor PD Marketing ARM 1 Introduction to Cortex-A15 & Seahawk ARM Cortex-A15 is a high performance engine for superphones,

More information

PERFORMANCE EVALUATION OF DIFFERENT SRAM CELL STRUCTURES AT DIFFERENT TECHNOLOGIES

PERFORMANCE EVALUATION OF DIFFERENT SRAM CELL STRUCTURES AT DIFFERENT TECHNOLOGIES PERFORMANCE EVALUATION OF DIFFERENT SRAM CELL STRUCTURES AT DIFFERENT TECHNOLOGIES Sapna Singh 1, Neha Arora 2, Meenakshi Suthar 3 and Neha Gupta 4 Faculty of Engineering Technology, Mody Institute of

More information

A 19.4 nj/decision 364K Decisions/s In-Memory Random Forest Classifier in 6T SRAM Array. Mingu Kang, Sujan Gonugondla, Naresh Shanbhag

A 19.4 nj/decision 364K Decisions/s In-Memory Random Forest Classifier in 6T SRAM Array. Mingu Kang, Sujan Gonugondla, Naresh Shanbhag A 19.4 nj/decision 364K Decisions/s In-Memory Random Forest Classifier in 6T SRAM Array Mingu Kang, Sujan Gonugondla, Naresh Shanbhag University of Illinois at Urbana Champaign Machine Learning under Resource

More information

Design and Simulation of Low Power 6TSRAM and Control its Leakage Current Using Sleepy Keeper Approach in different Topology

Design and Simulation of Low Power 6TSRAM and Control its Leakage Current Using Sleepy Keeper Approach in different Topology Vol. 3, Issue. 3, May.-June. 2013 pp-1475-1481 ISSN: 2249-6645 Design and Simulation of Low Power 6TSRAM and Control its Leakage Current Using Sleepy Keeper Approach in different Topology Bikash Khandal,

More information

Introducing the 22FDX. 22nm FD-SOI Platform. from GLOBALFOUNDRIES

Introducing the 22FDX. 22nm FD-SOI Platform. from GLOBALFOUNDRIES Introducing the 22FDX 22nm FD-SOI Platform from GLOBALFOUNDRIES March 2016 Introduction Selecting a next generation technology platform for your new product is a critical decision. Product requirements

More information

Macro in a Generic Logic Process with No Boosted Supplies

Macro in a Generic Logic Process with No Boosted Supplies A 700MHz 2T1C Embedded DRAM Macro in a Generic Logic Process with No Boosted Supplies Ki Chul Chun, Wei Zhang, Pulkit Jain, and Chris H. Kim University of Minnesota, Minneapolis, MN Outline Motivation

More information

envm in Automotive Modules MINATEC Workshop Grenoble, June 21, 2010 May Marco 28, 2009 OLIVO, ST Automotive Group

envm in Automotive Modules MINATEC Workshop Grenoble, June 21, 2010 May Marco 28, 2009 OLIVO, ST Automotive Group envm in Automotive Modules MINATEC Workshop Grenoble, June 21, 2010 May Marco 28, 2009 OLIVO, ST Automotive Group envm in automotive: Outline marketing requirements

More information

CALCULATION OF POWER CONSUMPTION IN 7 TRANSISTOR SRAM CELL USING CADENCE TOOL

CALCULATION OF POWER CONSUMPTION IN 7 TRANSISTOR SRAM CELL USING CADENCE TOOL CALCULATION OF POWER CONSUMPTION IN 7 TRANSISTOR SRAM CELL USING CADENCE TOOL Shyam Akashe 1, Ankit Srivastava 2, Sanjay Sharma 3 1 Research Scholar, Deptt. of Electronics & Comm. Engg., Thapar Univ.,

More information

Vdd Programmable and Variation Tolerant FPGA Circuits and Architectures

Vdd Programmable and Variation Tolerant FPGA Circuits and Architectures Vdd Programmable and Variation Tolerant FPGA Circuits and Architectures Prof. Lei He EE Department, UCLA LHE@ee.ucla.edu Partially supported by NSF. Pathway to Power Efficiency and Variation Tolerance

More information

emram: From Technology to Applications David Eggleston VP Embedded Memory

emram: From Technology to Applications David Eggleston VP Embedded Memory emram: From Technology to Applications David Eggleston VP Embedded Memory 10,000 foot view What are we trying to achieve? 2 Memory is Know Remembering. Think Events 3 Memory is Code Persistence. Data State

More information

MTJ-Based Nonvolatile Logic-in-Memory Architecture

MTJ-Based Nonvolatile Logic-in-Memory Architecture 2011 Spintronics Workshop on LSI @ Kyoto, Japan, June 13, 2011 MTJ-Based Nonvolatile Logic-in-Memory Architecture Takahiro Hanyu Center for Spintronics Integrated Systems, Tohoku University, JAPAN Laboratory

More information

DRAM with Boosted 3T Gain Cell, PVT-tracking Read Reference Bias

DRAM with Boosted 3T Gain Cell, PVT-tracking Read Reference Bias ASub-0 Sub-0.9V Logic-compatible Embedded DRAM with Boosted 3T Gain Cell, Regulated Bit-line Write Scheme and PVT-tracking Read Reference Bias Ki Chul Chun, Pulkit Jain, Jung Hwa Lee*, Chris H. Kim University

More information

POWER AND AREA EFFICIENT 10T SRAM WITH IMPROVED READ STABILITY

POWER AND AREA EFFICIENT 10T SRAM WITH IMPROVED READ STABILITY ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, APRL 2017, VOLUME: 03, ISSUE: 01 DOI: 10.21917/ijme.2017.0059 POWER AND AREA EFFICIENT 10T SRAM WITH IMPROVED READ STABILITY T.S. Geethumol,

More information

IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY LOW POWER SRAM DESIGNS: A REVIEW Asifa Amin*, Dr Pallavi Gupta *

IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY LOW POWER SRAM DESIGNS: A REVIEW Asifa Amin*, Dr Pallavi Gupta * IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY LOW POWER SRAM DESIGNS: A REVIEW Asifa Amin*, Dr Pallavi Gupta * School of Engineering and Technology Sharda University Greater

More information

A Low Power SRAM Base on Novel Word-Line Decoding

A Low Power SRAM Base on Novel Word-Line Decoding Vol:, No:3, 008 A Low Power SRAM Base on Novel Word-Line Decoding Arash Azizi Mazreah, Mohammad T. Manzuri Shalmani, Hamid Barati, Ali Barati, and Ali Sarchami International Science Index, Computer and

More information

Oberon M2M IoT Platform. JAN 2016

Oberon M2M IoT Platform. JAN 2016 Oberon M2M IoT Platform JAN 2016 www.imgtec.com Contents Iot Segments and Definitions Targeted Use Cases for IoT Oberon targeted use cases IoT Differentiators IoT Power Management IoT Security Integrated

More information

A Single Ended SRAM cell with reduced Average Power and Delay

A Single Ended SRAM cell with reduced Average Power and Delay A Single Ended SRAM cell with reduced Average Power and Delay Kritika Dalal 1, Rajni 2 1M.tech scholar, Electronics and Communication Department, Deen Bandhu Chhotu Ram University of Science and Technology,

More information

Dependable VLSI Platform using Robust Fabrics

Dependable VLSI Platform using Robust Fabrics Dependable VLSI Platform using Robust Fabrics Director H. Onodera, Kyoto Univ. Principal Researchers T. Onoye, Y. Mitsuyama, K. Kobayashi, H. Shimada, H. Kanbara, K. Wakabayasi Background: Overall Design

More information

Z-RAM Ultra-Dense Memory for 90nm and Below. Hot Chips David E. Fisch, Anant Singh, Greg Popov Innovative Silicon Inc.

Z-RAM Ultra-Dense Memory for 90nm and Below. Hot Chips David E. Fisch, Anant Singh, Greg Popov Innovative Silicon Inc. Z-RAM Ultra-Dense Memory for 90nm and Below Hot Chips 2006 David E. Fisch, Anant Singh, Greg Popov Innovative Silicon Inc. Outline Device Overview Operation Architecture Features Challenges Z-RAM Performance

More information

Adaptive Voltage Scaling (AVS) Alex Vainberg October 13, 2010

Adaptive Voltage Scaling (AVS) Alex Vainberg   October 13, 2010 Adaptive Voltage Scaling (AVS) Alex Vainberg Email: alex.vainberg@nsc.com October 13, 2010 Agenda AVS Introduction, Technology and Architecture Design Implementation Hardware Performance Monitors Overview

More information

A 65nm LEVEL-1 CACHE FOR MOBILE APPLICATIONS

A 65nm LEVEL-1 CACHE FOR MOBILE APPLICATIONS A 65nm LEVEL-1 CACHE FOR MOBILE APPLICATIONS ABSTRACT We describe L1 cache designed for digital signal processor (DSP) core. The cache is 32KB with variable associativity (4 to 16 ways) and is pseudo-dual-ported.

More information

arxiv: v1 [cs.ar] 29 May 2017

arxiv: v1 [cs.ar] 29 May 2017 Understanding Reduced-Voltage Operation in Modern DRAM Chips: Characterization, Analysis, and Mechanisms Kevin K. Chang Abdullah Giray Yağlıkçı Saugata Ghose Aditya Agrawal Niladrish Chatterjee Abhijith

More information

Adaptive Robustness Tuning for High Performance Domino Logic

Adaptive Robustness Tuning for High Performance Domino Logic Adaptive Robustness Tuning for High Performance Domino Logic Bharan Giridhar 1, David Fick 1, Matthew Fojtik 1, Sudhir Satpathy 1, David Bull 2, Dennis Sylvester 1 and David Blaauw 1 1 niversity of Michigan,

More information

IMPROVING energy efficiency is critical for a wide variety

IMPROVING energy efficiency is critical for a wide variety IEEE JOURNAL OF SOLID-STATE CIRCUITS 1 Reprogrammable Redundancy for SRAM-Based Cache V min Reduction in a 28-nm RISC-V Processor Brian Zimmer, Member, IEEE, Pi-Feng Chiu, Student Member, IEEE, Borivoje

More information

Low Leakage Bit-Line Sram Design Architectures

Low Leakage Bit-Line Sram Design Architectures Low Leakage Bit-Line Sram Design Architectures Ratan kumar.s.v., Dept. of ECE, Assistant Professor, RGMCET, Nandyal, saneratankumar@gmail.com Mr.S.Kashif Hussain, Asst.Prof in ECE, RGMCET, Nandyal, kashif1919@gmail.com

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 2300 Digital Logic & Computer Organization Spring 201 Memories Lecture 14: 1 Announcements HW6 will be posted tonight Lab 4b next week: Debug your design before the in-lab exercise Lecture 14: 2 Review:

More information

CS250 VLSI Systems Design Lecture 9: Memory

CS250 VLSI Systems Design Lecture 9: Memory CS250 VLSI Systems esign Lecture 9: Memory John Wawrzynek, Jonathan Bachrach, with Krste Asanovic, John Lazzaro and Rimas Avizienis (TA) UC Berkeley Fall 2012 CMOS Bistable Flip State 1 0 0 1 Cross-coupled

More information

Power Solutions for Leading-Edge FPGAs. Vaughn Betz & Paul Ekas

Power Solutions for Leading-Edge FPGAs. Vaughn Betz & Paul Ekas Power Solutions for Leading-Edge FPGAs Vaughn Betz & Paul Ekas Agenda 90 nm Power Overview Stratix II : Power Optimization Without Sacrificing Performance Technical Features & Competitive Results Dynamic

More information

Low-Power Technology for Image-Processing LSIs

Low-Power Technology for Image-Processing LSIs Low- Technology for Image-Processing LSIs Yoshimi Asada The conventional LSI design assumed power would be supplied uniformly to all parts of an LSI. For a design with multiple supply voltages and a power

More information

Data sheet CPU 115 (115-6BL02)

Data sheet CPU 115 (115-6BL02) Data sheet CPU 115 (115-6BL02) Technical data Order no. 115-6BL02 Type CPU 115 General information Note - Features 16 (20) inputs 16 (12) outputs from which are 2 PWM 50 khz outputs 16 kb work memory,

More information

DIE-TO-DIE and within-die variations in process parameters

DIE-TO-DIE and within-die variations in process parameters 1370 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 6, JUNE 2007 Design of a Process Variation Tolerant Self-Repairing SRAM for Yield Enhancement in Nanoscaled CMOS Saibal Mukhopadhyay, Member, IEEE,

More information

Process and Design Solutions for Exploiting FD SOI Technology Towards Energy Efficient SOCs

Process and Design Solutions for Exploiting FD SOI Technology Towards Energy Efficient SOCs Process and Design Solutions for Exploiting FD SOI Technology Towards Energy Efficient SOCs Philippe FLATRESSE Technology R&D Central CAD & Design Solutions STMicroelectronics International Symposium on

More information

Power / Capacity Scaling: Energy Savings With Simple Fault-Tolerant Caches

Power / Capacity Scaling: Energy Savings With Simple Fault-Tolerant Caches / Capacity Scaling: Energy Savings With Simple Fault-Tolerant Caches Nikil Dutt UC Irvine Computer Science dutt@uci.edu Mark Gottscho UCLA Electrical Engineering mgottscho@ucla.edu Alex Nicolau UC Irvine

More information

Trends and Challenges

Trends and Challenges Trends and Challenges High accuracy is required in characterization, verification & signoff Increasing design complexities: -scale design ( ) using nano-scale technologies ( ) Shrinking design margins

More information

Chapter 3 Semiconductor Memories. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 3 Semiconductor Memories. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 3 Semiconductor Memories Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction Random Access Memories Content Addressable Memories Read

More information

Article begins on next page

Article begins on next page Title: A 19.4 nj/ 364K s/s in-memory random forest classifier in 6T SRAM array Archived version Accepted manuscript: the content is identical to the published paper, but without the final typesetting by

More information

Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives

Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives Chao Sun 1, Asuka Arakawa 1, Ayumi Soga 1, Chihiro Matsui 1 and Ken Takeuchi 1 1 Chuo University Santa Clara,

More information

FDSOI TECHNOLOGY: GENERAL OVERVIEW & LOW-POWER DESIGN. SITRI FDSOI workshop l 08/09/2016

FDSOI TECHNOLOGY: GENERAL OVERVIEW & LOW-POWER DESIGN. SITRI FDSOI workshop l 08/09/2016 FDSOI TECHNOLOGY: GENERAL OVERVIEW & LOW-POWER DESIGN SITRI FDSOI workshop l 08/09/2016 OUTLINE FDSOI technology overview From bulk to UTBB-FDSOI FDSOI technology flavors Comparison between the different

More information

Phase Change Memory An Architecture and Systems Perspective

Phase Change Memory An Architecture and Systems Perspective Phase Change Memory An Architecture and Systems Perspective Benjamin C. Lee Stanford University bcclee@stanford.edu Fall 2010, Assistant Professor @ Duke University Benjamin C. Lee 1 Memory Scaling density,

More information

HEAT (Hardware enabled Algorithmic tester) for 2.5D HBM Solution

HEAT (Hardware enabled Algorithmic tester) for 2.5D HBM Solution HEAT (Hardware enabled Algorithmic tester) for 2.5D HBM Solution Kunal Varshney, Open-Silicon Ganesh Venkatkrishnan, Open-Silicon Pankaj Prajapati, Open-Silicon May 9, 9, 2016 1 Agenda High Bandwidth Memory

More information

Understanding the tradeoffs and Tuning the methodology

Understanding the tradeoffs and Tuning the methodology Understanding the tradeoffs and Tuning the methodology Graham Scott, Technical Lead ARM Cortex Application Processors, Cadence Nandan Nayampally, Director CPU Product Marketing, ARM Inc 1 Agenda Market

More information

Self-Time Tracking Circuit to Improve Access Time of SRAM

Self-Time Tracking Circuit to Improve Access Time of SRAM Self-Time Tracking Circuit to Improve Access Time of SRAM Pullareddy. A Research Scholar, Department of Electronics and Communication Engineering, Sri Venkateswara University College of Engineering, Sri

More information

Implementation of DRAM Cell Using Transmission Gate

Implementation of DRAM Cell Using Transmission Gate Implementation of DRAM Cell Using Transmission Gate Pranita J. Giri 1, Sunanda K. Kapde 2 PG Student, Department of E&TC, Deogiri Institute of Engineering & Management Studies, Aurangabad (MS), India 1

More information

Reconfigurable Energy Efficient Near Threshold Cache Architectures

Reconfigurable Energy Efficient Near Threshold Cache Architectures Reconfigurable Energy Efficient Near Threshold Cache Architectures Ronald G. Dreslinski, Gregory K. Chen, Trevor Mudge, David Blaauw, Dennis Sylvester University of Michigan - Ann Arbor, MI {rdreslin,grgkchen,tnm,blaauw,dennis}@eecs.umich.edu

More information

GHz Asynchronous SRAM in 65nm. Jonathan Dama, Andrew Lines Fulcrum Microsystems

GHz Asynchronous SRAM in 65nm. Jonathan Dama, Andrew Lines Fulcrum Microsystems GHz Asynchronous SRAM in 65nm Jonathan Dama, Andrew Lines Fulcrum Microsystems Context Three Generations in Production, including: Lowest latency 24-port 10G L2 Ethernet Switch Lowest Latency 24-port 10G

More information

Power Gate Optimization Method for In-Rush Current and Power Up Time

Power Gate Optimization Method for In-Rush Current and Power Up Time Power Gate Optimization Method for In-Rush Current and Power Up Time Presenter : Teng, Siong Kiong Ung, Chee Kong Intel Corporation Intel and the Intel logo are registered trademarks of Intel Corporation

More information

Parallel Circuit Simulation: How Good Can It Get? Andrei Vladimirescu

Parallel Circuit Simulation: How Good Can It Get? Andrei Vladimirescu Parallel Circuit Simulation: How Good Can It Get? Andrei Vladimirescu Overview Opportunities for Full-Chip Analog Verification Analog vs. Digital Design SPICE standard design tool for Analog and Mixed-Signal

More information

High temperature / radiation hardened capable ARM Cortex -M0 microcontrollers

High temperature / radiation hardened capable ARM Cortex -M0 microcontrollers High temperature / radiation hardened capable ARM Cortex -M0 microcontrollers R. Bannatyne, D. Gifford, K. Klein, C. Merritt VORAGO Technologies 2028 E. Ben White Blvd., Suite #220, Austin, Texas, 78741,

More information

An FPGA Architecture Supporting Dynamically-Controlled Power Gating

An FPGA Architecture Supporting Dynamically-Controlled Power Gating An FPGA Architecture Supporting Dynamically-Controlled Power Gating Altera Corporation March 16 th, 2012 Assem Bsoul and Steve Wilton {absoul, stevew}@ece.ubc.ca System-on-Chip Research Group Department

More information

3D NAND Assessment for Next Generation Flash Applications

3D NAND Assessment for Next Generation Flash Applications ** Patrick Breen, ** Tom Griffin, * Nikolaos Papandreou, * Thomas Parnell, ** Gary Tressler * IBM Research Zurich, Switzerland ** IBM Systems Poughkeepsie, NY, USA IBM Corporation August 2016 1 Agenda

More information

RECENT advancements in machine learning and artificial

RECENT advancements in machine learning and artificial 1412 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 64, NO. 12, DECEMBER 2017 Data-Driven Intelligent Efficient Synaptic Storage for Deep Learning Jonathon Edstrom, Yifu Gong, Dongliang

More information