Austin Herring Recitation 002 ECE 200 Project December 4, 2013


 Baldric Brent Norman
 3 years ago
 Views:
Transcription
1 1. Fastest Circuit a. How Design Was Obtained The first step of creating the design was to derive the expressions for S and C out from the given truth tables. This was done using Karnaugh maps. The Karnaugh map for S was as follows: C in AB> This Kmap revealed that S, in sumofproducts form, cannot be simplified beyond its four basic minterms and that in productofsums form it cannot be simplified beyond its four basic maxterms either. Because the costs for AND/OR gates (and NAND/NOR gates for that matter), in terms of both time and money, are equivalent, it did not matter if minterms or maxterms were used from this point forward. Ultimately, it was decided that the minterm expression would be used: S = ABC in + AB C in + A BC in + A B C in Next, the Kmap for C out was created: C in AB> Using these three prime implicants, a minimized sumofproducts expression for C out was created: C out = AB + AC in + BC in The Kmap also revealed that the minimized productofsums form would also contain three terms, and, per the reasoning above, either of these expressions could be used equivalently going forward. Again the sumofproducts form was chosen. After deriving these expressions for S and C out, the idea of factoring out terms (so that S might become, for example, A(BC in + B C in ) + A (BC in + B C in )) was played with, but this ultimately only increased the number of operations which would have to be performed in sequence, eliminating possibilities for parallelism and thus increasing runtime. In light of this, the best way to create these circuits was to directly translate them to gates from the derived expressions. To begin with, S needed to have the complements available for all three inputs, so three NOT gates were required directly on the inputs as they came in. From there, S needed four threeinput AND gates with inputs A, B, and C in ; A, B, and C in ; A, B, and C in ; and A, B, and C in, and the outputs of these AND gates needed to be OR d together. Because there were no fourinput OR gates available, this could have been done one of two ways: three of the outputs could have been OR d together with a threeinput OR gate and then that output could have been OR d with the last AND output with a twoinput OR gate; or two of the AND outputs could have been OR d together at a time with two twoinput OR gates, and the results from these ORs could have been put through a final twoinput OR gate. The second case turned out to be the faster option, because the final twoinput OR gate did not have to wait for a threeinput OR gate, which takes longer than the two twoinput OR gates, which can act in parallel. At this point, the circuit for S looked as follows:
2 At this point, it was realized that if each input into the AND gates was NOT d, these combinations of gates could be replaced for the quicker, yet equivalent, NOR gates. To do this, each input line to the ANDs would require that NOT gate and another NOT gate so that the overall expression would remain equivalent. For example, the topmost gate would require inputs (A), (B), and (C in ). Therefore once the ANDs were replaced with NORs, one NOT would remain: A, B, and C in. This meant that the inputs to the AND gate simply had to be switched from the straight version to the NOT d version. It turns out this is the case for all four AND gates: switch the NOT d inputs to the straight inputs and the straight inputs to the NOT d versions. Then switching the ANDs to NORs leads to an equivalent expression. Finally, the two sets of OR gates on the righthand side could be converted to NORs and a NAND, which are faster, by placing a NOT gate after the output of the first two ORs and two more NOT gates before the inputs to the final OR gate. Therefore the two OR gates acting in parallel became NOR gates, and, by DeMorgan s theorem, the final NOR became a NAND, all while still remaining equivalent. Next, as was first done with S, C out was translated directly to circuitry from its minimized expression. It required three twoinput AND gates which had inputs A and B; A and C in ; and B and C in. Finally, these three AND outputs were OR d together using a threeinput OR gate. The circuit then looked as follows:
3 The time for C out could be decreased by NOT ing the output of each AND gate and then NOT ing these three signals again before they reach the OR gate at the right. Therefore all three AND gates and, by DeMorgan s theorem, the OR gate could be replaced by NAND gates, which are quicker than the older gates. b. Final Schematic
4 c. Calculation of Cost S: 1input NOT: 3 x $0.01 = $ input NOR: 4 x $0.03 = $ input NOR: 2 x $0.02 = $ input NAND: 1 x $0.02 = $0.02 Total = $0.21 C out : 2input NAND: 3 x $0.02 = $ input NAND: 1 x $0.03 = $0.03 Total = $0.09 Total cost = $ $0.09 = $0.30 d. Calculation of Speed The circuit for S can be thought of as acting in four phases in which several actions occur in parallel. Because all of the components acting in parallel in a given phase are of the same gate type, the time for each phase is simply the amount of time for the gate used in that phase. The first phase is when the inputs are all NOT d. The second phase is the NOR ing of the inputs and their complements together to create the minterms. The third phase is the NOR ing of the NOR outputs. The final phase is NAND ing the last two NOR outputs. Phase 1: time to NOT a variable = 8 ns Phase 2: time to NOR three inputs = 12 ns Phase 3: time to NOR two inputs = 8 ns Phase 4: time to NAND two inputs = 8 ns Total time = = 36 ns Similarly, the C out circuitry occurs in two phases, the first NAND stage and the second NAND stage: Phase 1: time to NAND two inputs = 8 ns Phase 2: time to NAND three inputs = 12 ns Total time = = 20 ns e. How Design Is Fastest As discussed above in part 1a, the fastest way to create the circuits using AND and OR gates was to directly translate the minimized expressions into circuits (because factoring out variables only increased the number of operations, the number of gates, and the time). However, after creating the circuits with AND and OR gates, it was possible to speed it up by switching all of those gates out for NANDs and NORs. Therefore it would be impossible to create a quicker circuit using AND and OR gates. It is also
5 impossible to eliminate any of the NAND and NOR gates from the final design (or the initial NOT gates), so the provided circuit must be the quickest possible made of NANDs and NORs. As for the other component types, the only two which are quicker than S on their own are the 2x4 decoder and the 4x1 multiplexer, both at 35 ns. (None are quicker than C out, so there is no way to calculate C out more quickly with these other components.) However, both of these components would require at least one NOT gate to be used for the S output, which would place the overall time at 43 ns, greater than that for the provided design. 2. Cheapest Circuit a. How Design Was Obtained Examining the truth table for S, it was noticed that when A and B are both 0, S is equivalent to C in ; when they are 0 and 1, respectively, S is equivalent to C in ; when they are 1 and 0, S is equivalent to C in ; and when they are both 1, S is equivalent to C in. This meant that a 4x1 multiplexer could be used, with A and B as the select lines and the specified versions ( straight or NOT d) of C in as the input lines, to create circuitry for S. As described above in 1a, the minimized expression for C out is AB + AC in + BC in. For the purposes of cost, factoring out one of the variables turns out to be beneficial; the new expression retained the same number of operations, but instead of requiring a final threeinput OR gate, all of the gates became twoinput gates, which reduced the cost. Therefore C out, for creating this circuit, was thought of as: AB + C in (A + B) This expression was translated into gates for the circuit below. b. Final Schematic
6 c. Calculation of Cost S: 1input NOT: 1 x $0.01 = $0.01 4x1 multiplexer: 1 x $0.10 = $0.10 Total = $0.11 C out : 2input AND: 2 x $0.01 = $ input OR: 2 x $0.01 = $0.02 Total = $0.04 Total cost = $ $0.04 = $0.15 d. Calculation of Speed S occurs in two phases: C in is first NOT d, and then all three inputs are run through the multiplexer. Phase 1: time to NOT a variable = 8 ns Phase 2: time for 4x1 multiplexer = 35 ns Total time = = 43 ns C out occurs in what are essentially three phases. In the first, A and B are run through the AND and OR gates to which they are attached. In the second phase, C in is AND d with A + B. Finally, AB and C in (A + B) are OR d. Phase 1: time to AND/OR two inputs = 10 ns Phase 2: time to AND two inputs = 10 ns Phase 3: time to OR two inputs = 10 ns Total time = = 30 ns e. How Design Is Cheapest To create equivalent circuitry for S and C out with decoders, either a 3x8 decoder or two 2x4 decoders would be required, and both of these options cost $0.20, more than the cost of the provided design. Similarly, the 8x1 multiplexer immediately costs more than the provided design at $0.20. Therefore the only possible way to create a cheaper design would be through the use of AND, OR, NAND, and NOR gates. Any NAND or NOR gate can be converted to an AND/OR followed by a NOT at the same cost, however, so, in reality, the only way to create a cheaper design would be to use ANDs and ORs. C out is already in terms of ANDs and ORs, and it is already as cheap as it can be. Though it could be created in different ways for the same cost, it is impossible to eliminate any more gates; the expression AB + C in (A + B) cannot be manipulated in any way to eliminate literals or expressions through factoring. This leaves only S to possibly be simplified further. None of the expressions provided for S so far have directly equivalent circuits which are cheaper than the provided design. For example,
7 (ABC in + AB C in ) + (A BC in + A B C in ) ABC in + (AB C in + A BC in + A B C in ) A(BC in + B C in ) + A (BC in + B C in ) are all more expensive designs when they are translated to gates. However, through algebraic manipulation of the expression ABC in + AB C in + A BC in + A B C in, first by factoring C in out of the middle expressions and C in out of the outer ones and then by distributing OR over AND in the expressions that were just factored, it is possible to create the expression: C in (A + B )(A + B) + C in (A + B )(A + B) This expression would normally require NOT gates for the three inputs, costing $0.03; four twoinput OR gates for the expressions of A and B, costing $0.04; two threeinput AND gates, costing $0.04; and one final twoinput OR gates for the AND d expressions, costing $0.02. This would mean a total cost of $0.12. However, A + B is a term this expression shares with C out, eliminating the need for one of the twoinput OR gates and bringing the cost down by $0.01. This is the cheapest possible way to represent S using AND and OR gates, and it brings the cost down to $0.11, the same as the provided design. However, because the provided design is much simpler as well as slightly faster than the AND/OR design, it is still the overall better choice. 3. Best Circuit a. How Design Was Obtained For the best possible circuit, the circuitry for the cheapest option of S will be reused. However, C out will not use circuitry from either the fastest of cheapest design. Instead, it will try to straddle the line between the two by using the first circuit provided for C out in part 1a, the expression AB + AC in + BC in translated into gates. b. Final Schematic
8 c. Calculation of Cost S as above: Total = $0.11 C out : 2input AND: 3 x $0.01 = $ input OR: 1 x $0.02 = $0.02 Total = $0.05 Total cost = $ $0.05 = $0.16 d. Calculation of Speed S as above: Total time = 43 ns C out : Phase 1: time to AND two inputs: 10 ns Phase 2: time to OR three inputs: 15 ns Total time = 25 ns e. How Design Is Best The design provided here provides an excellent balance between cost and timing. The S option is the cheapest one available for only a small sacrifice in timing. There are only a few ways to build circuits for S that are faster than (or the same speed as) this design, but, because most of them use NAND and NOR gates, they are more expensive. For comparison, the design is only 7 nanoseconds slower than the fastest design, but it nearly halves the price of that design ($0.11 versus $0.21). Moreover, this design is very simple, being made up of only a single NOT gate and a multiplexer. The outputs can be determined in seconds while looking at it, and it would likely be easier to put together and less prone to failure. The choice made for C out is the best because it, again, shows a balance between speed and cost. While the fastest design takes only 20 nanoseconds, it costs $0.09; and while the cheapest design costs only $0.04, it takes 30 nanoseconds. For just a single cent more, at $0.05, the provided design can speed up the cheapest design to 25 nanoseconds. While this is not quite as fast as the 20 nanosecond design, it is about the half the cost of that design, which is a fair trade off for about 5 nanoseconds slower. Because these designs can provide both outputs relatively fast, all while doing it for only one cent more than the cheapest possible circuit combination, this is likely the best circuit design and the one that the company should go with.
Chapter 2. Boolean Expressions:
Chapter 2 Boolean Expressions: A Boolean expression or a function is an expression which consists of binary variables joined by the Boolean connectives AND and OR along with NOT operation. Any Boolean
More information1. Mark the correct statement(s)
1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another
More informationExperiment 3: Logic Simplification
Module: Logic Design Name:... University no:.. Group no:. Lab Partner Name: Mr. Mohamed ElSaied Experiment : Logic Simplification Objective: How to implement and verify the operation of the logical functions
More informationCombinational Logic Circuits
Chapter 3 Combinational Logic Circuits 12 Hours 24 Marks 3.1 Standard representation for logical functions Boolean expressions / logic expressions / logical functions are expressed in terms of logical
More information2.6 BOOLEAN FUNCTIONS
2.6 BOOLEAN FUNCTIONS Binary variables have two values, either 0 or 1. A Boolean function is an expression formed with binary variables, the two binary operators AND and OR, one unary operator NOT, parentheses
More informationBawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University
Logic Design First Stage Lecture No.5 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Boolean Operations Laws of Boolean Algebra Rules of Boolean Algebra
More informationBawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University
Logic Design First Stage Lecture No.6 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Outlines Boolean Operations Laws of Boolean Algebra Rules of
More informationLecture (05) Boolean Algebra and Logic Gates
Lecture (05) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Minterms and Maxterms consider two binary variables x and y combined with an AND operation. Since eachv ariable may appear in either
More informationSummary. Boolean Addition
Summary Boolean Addition In Boolean algebra, a variable is a symbol used to represent an action, a condition, or data. A single variable can only have a value of or 0. The complement represents the inverse
More informationAssignment (36) Boolean Algebra and Logic Simplification  General Questions
Assignment (36) Boolean Algebra and Logic Simplification  General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make
More informationCombinational Circuits Digital Logic (Materials taken primarily from:
Combinational Circuits Digital Logic (Materials taken primarily from: http://www.facstaff.bucknell.edu/mastascu/elessonshtml/eeindex.html http://www.cs.princeton.edu/~cos126 ) Digital Systems What is a
More informationQUESTION BANK FOR TEST
CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK FOR TEST 1 Note: This represents a sample set. Please study all the topics from the lecture notes. Question 1. Multiple Choice
More informationCHAPTER2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, KMap and QuineMcCluskey
CHAPTER2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, KMap and QuineMcCluskey 2. Introduction Logic gates are connected together to produce a specified output for certain specified combinations of input
More informationGate Level Minimization Map Method
Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically
More informationIT 201 Digital System Design Module II Notes
IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.
More informationSYNERGY INSTITUTE OF ENGINEERING & TECHNOLOGY,DHENKANAL LECTURE NOTES ON DIGITAL ELECTRONICS CIRCUIT(SUBJECT CODE:PCEC4202)
Lecture No:5 Boolean Expressions and Definitions Boolean Algebra Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It uses only the binary numbers i.e. 0 and 1. It is also called
More informationDIGITAL CIRCUIT LOGIC UNIT 5: KARNAUGH MAPS (KMAPS)
DIGITAL CIRCUIT LOGIC UNIT 5: KARNAUGH MAPS (KMAPS) 1 Learning Objectives 1. Given a function (completely or incompletely specified) of three to five variables, plot it on a Karnaugh map. The function
More informationChap2 Boolean Algebra
Chap2 Boolean Algebra Contents: My name Outline: My position, contact Basic information theorem and postulate of Boolean Algebra. or project description Boolean Algebra. Canonical and Standard form. Digital
More informationChapter 3. Boolean Algebra and Digital Logic
Chapter 3 Boolean Algebra and Digital Logic Chapter 3 Objectives Understand the relationship between Boolean logic and digital computer circuits. Learn how to design simple logic circuits. Understand how
More informationDIGITAL CIRCUIT LOGIC UNIT 7: MULTILEVEL GATE CIRCUITS NAND AND NOR GATES
DIGITAL CIRCUIT LOGIC UNIT 7: MULTILEVEL GATE CIRCUITS NAND AND NOR GATES 1 iclicker Question 13 Considering the KMap, f can be simplified as (2 minutes): A) f = b c + a b c B) f = ab d + a b d AB CD
More informationExperiment 4 Boolean Functions Implementation
Experiment 4 Boolean Functions Implementation Introduction: Generally you will find that the basic logic functions AND, OR, NAND, NOR, and NOT are not sufficient to implement complex digital logic functions.
More informationSimplification of Boolean Functions
Simplification of Boolean Functions Contents: Why simplification? The Map Method Two, Three, Four and Five variable Maps. Simplification of two, three, four and five variable Boolean function by Map method.
More informationCombinational Logic & Circuits
WeekI Combinational Logic & Circuits Spring' 232  Logic Design Page Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other
More informationChapter 6. Logic Design Optimization Chapter 6
Chapter 6 Logic Design Optimization Chapter 6 Optimization The second part of our design process. Optimization criteria: Performance Size Power Twolevel Optimization Manipulating a function until it is
More information(Refer Slide Time 6:48)
Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture  8 Karnaugh Map Minimization using Maxterms We have been taking about
More informationSlide Set 5. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary
Slide Set 5 for ENEL 353 Fall 207 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 207 SN s ENEL 353 Fall 207 Slide Set 5 slide
More informationGateLevel Minimization. BME208 Logic Circuits Yalçın İŞLER
GateLevel Minimization BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com Complexity of Digital Circuits Directly related to the complexity of the algebraic expression we use to
More informationCombinational Logic Circuits Part III Theoretical Foundations
Combinational Logic Circuits Part III Theoretical Foundations Overview Simplifying Boolean Functions Algebraic Manipulation Karnaugh Map Manipulation (simplifying functions of 2, 3, 4 variables) Systematic
More informationGet Free notes at ModuleI One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)
More informationChapter 3. GateLevel Minimization. Outlines
Chapter 3 GateLevel Minimization Introduction The Map Method FourVariable Map FiveVariable Map Outlines Product of Sums Simplification Don tcare Conditions NAND and NOR Implementation Other TwoLevel
More informationContents. Chapter 3 Combinational Circuits Page 1 of 34
Chapter 3 Combinational Circuits Page of 34 Contents Contents... 3 Combinational Circuits... 2 3. Analysis of Combinational Circuits... 2 3.. Using a Truth Table... 2 3..2 Using a Boolean unction... 4
More informationDepartment of Electrical Engineering McGill University ECSE 221 Introduction to Computer Engineering Assignment 2 Combinational Logic
Department of Electrical Engineering McGill University ECSE 221 Introduction to Computer Engineering Assignment 2 Combinational Logic Question 1: Due October 19 th, 2009 A convenient shorthand for specifying
More informationLogic Gates and Boolean Algebra ENT263
Logic Gates and Boolean Algebra ENT263 Logic Gates and Boolean Algebra Now that we understand the concept of binary numbers, we will study ways of describing how systems using binary logic levels make
More informationLSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology
LSN 4 Boolean Algebra & Logic Simplification Department of Engineering Technology LSN 4 Key Terms Variable: a symbol used to represent a logic quantity Compliment: the inverse of a variable Literal: a
More informationB.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN
B.Tech II Year I Semester () Regular Examinations December 2014 (Common to IT and CSE) (a) If 1010 2 + 10 2 = X 10, then X is  Write the first 9 decimal digits in base 3. (c) What is meant by don
More informationLecture 5. Chapter 2: Sections 47
Lecture 5 Chapter 2: Sections 47 Outline Boolean Functions What are Canonical Forms? Minterms and Maxterms Index Representation of Minterms and Maxterms SumofMinterm (SOM) Representations ProductofMaxterm
More informationLecture 4: Implementation AND, OR, NOT Gates and Complement
EE210: Switching Systems Lecture 4: Implementation AND, OR, NOT Gates and Complement Prof. YingLi Tian Feb. 13, 2018 Department of Electrical Engineering The City College of New York The City University
More informationCprE 281: Digital Logic
CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Minimization CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Administrative
More information2008 The McGrawHill Companies, Inc. All rights reserved.
28 The McGrawHill Companies, Inc. All rights reserved. 28 The McGrawHill Companies, Inc. All rights reserved. All or Nothing Gate Boolean Expression: A B = Y Truth Table (ee next slide) or AB = Y 28
More informationTo write Boolean functions in their standard Min and Max terms format. To simplify Boolean expressions using Karnaugh Map.
3.1 Objectives To write Boolean functions in their standard Min and Max terms format. To simplify Boolean expressions using. 3.2 Sum of Products & Product of Sums Any Boolean expression can be simplified
More informationCENG 4480 L09 Memory 3
CENG 4480 L09 Memory 3 Bei Yu Chapter 11 Memories Reference: CMOS VLSI Design A Circuits and Systems Perspective by H.E.Weste and D.M.Harris 1 Memory Arrays Memory Arrays Random Access Memory Serial Access
More informationAnnouncements. Chapter 2  Part 1 1
Announcements If you haven t shown the grader your proof of prerequisite, please do so by 11:59 pm on 09/05/2018 (Wednesday). I will drop students that do not show us the prerequisite proof after this
More informationMenu. Algebraic Simplification  Boolean Algebra EEL3701 EEL3701. MSOP, MPOS, Simplification
Menu Minterms & Maxterms SOP & POS MSOP & MPOS Simplification using the theorems/laws/axioms Look into my... 1 Definitions (Review) Algebraic Simplification  Boolean Algebra Minterms (written as m i ):
More informationCS8803: Advanced Digital Design for Embedded Hardware
CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883
More informationModule 7. Karnaugh Maps
1 Module 7 Karnaugh Maps 1. Introduction 2. Canonical and Standard forms 2.1 Minterms 2.2 Maxterms 2.3 Canonical Sum of Product or SumofMinterms (SOM) 2.4 Canonical product of sum or ProductofMaxterms(POM)
More informationEECS150 Homework 2 Solutions Fall ) CLD2 problem 2.2. Page 1 of 15
1.) CLD2 problem 2.2 We are allowed to use AND gates, OR gates, and inverters. Note that all of the Boolean expression are already conveniently expressed in terms of AND's, OR's, and inversions. Thus,
More informationSynthesis of combinational logic
Page 1 of 14 Synthesis of combinational logic indicates problems that have been selected for discussion in section, time permitting. Problem 1. A certain function F has the following truth table: A B C
More informationCode No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science
More informationENGIN 112 Intro to Electrical and Computer Engineering
ENGIN 2 Intro to Electrical and Computer Engineering Lecture 5 Boolean Algebra Overview Logic functions with s and s Building digital circuitry Truth tables Logic symbols and waveforms Boolean algebra
More informationPhiladelphia University Faculty of Information Technology Department of Computer Science. Computer Logic Design. By Dareen Hamoudeh.
Philadelphia University Faculty of Information Technology Department of Computer Science Computer Logic Design By Dareen Hamoudeh Dareen Hamoudeh 1 Canonical Forms (Standard Forms of Expression) Minterms
More informationSimplification of Boolean Functions
COM111 Introduction to Computer Engineering (Fall 20062007) NOTES 5  page 1 of 5 Introduction Simplification of Boolean Functions You already know one method for simplifying Boolean expressions: Boolean
More informationELCT201: DIGITAL LOGIC DESIGN
ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter
More informationDr. S. Shirani COE2DI4 Midterm Test #1 Oct. 14, 2010
Dr. S. Shirani COE2DI4 Midterm Test #1 Oct. 14, 2010 Instructions: This examination paper includes 9 pages and 20 multiplechoice questions starting on page 3. You are responsible for ensuring that your
More informationOptimized Implementation of Logic Functions
June 25, 22 9:7 vra235_ch4 Sheet number Page number 49 black chapter 4 Optimized Implementation of Logic Functions 4. Nc3xe4, Nb8 d7 49 June 25, 22 9:7 vra235_ch4 Sheet number 2 Page number 5 black 5 CHAPTER
More informationPoints Addressed in this Lecture. Standard form of Boolean Expressions. Lecture 4: Logic Simplication & Karnaugh Map
Points Addressed in this Lecture Lecture 4: Logic Simplication & Karnaugh Map Professor Peter Cheung Department of EEE, Imperial College London Standard form of Boolean Expressions SumofProducts (SOP),
More informationChapter 2 Combinational Logic Circuits
Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Overview Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard
More informationGate Level Minimization
Gate Level Minimization By Dr. M. Hebaishy Digital Logic Design Ch Simplifying Boolean Equations Example : Y = AB + AB Example 2: = B (A + A) T8 = B () T5 = B T Y = A(AB + ABC) = A (AB ( + C ) ) T8 =
More informationMidterm Exam Review. CS 2420 :: Fall 2016 Molly O'Neil
Midterm Exam Review CS 2420 :: Fall 2016 Molly O'Neil Midterm Exam Thursday, October 20 In class, pencil & paper exam Closed book, closed notes, no cell phones or calculators, clean desk 20% of your final
More informationCS470: Computer Architecture. AMD Quad Core
CS470: Computer Architecture Yashwant K. Malaiya, Professor malaiya@cs.colostate.edu AMD Quad Core 1 Architecture Layers Building blocks Gates, flipflops Functional bocks: Combinational, Sequential Instruction
More informationBoolean Analysis of Logic Circuits
Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: IInd Year, Sem  IIIrd Subject: Computer Science Paper No.: IX Paper Title: Computer System Architecture Lecture No.: 7 Lecture Title:
More informationCircuit analysis summary
Boolean Algebra Circuit analysis summary After finding the circuit inputs and outputs, you can come up with either an expression or a truth table to describe what the circuit does. You can easily convert
More informationGateLevel Minimization. section instructor: Ufuk Çelikcan
GateLevel Minimization section instructor: Ufuk Çelikcan Compleity of Digital Circuits Directly related to the compleity of the algebraic epression we use to build the circuit. Truth table may lead to
More informationELCT201: DIGITAL LOGIC DESIGN
ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter
More informationGateLevel Minimization
MEC520 디지털공학 GateLevel Minimization JeeHwan Ryu School of Mechanical Engineering GateLevel MinimizationThe Map Method Truth table is unique Many different algebraic expression Boolean expressions may
More informationChapter Three. Digital Components
Chapter Three 3.1. Combinational Circuit A combinational circuit is a connected arrangement of logic gates with a set of inputs and outputs. The binary values of the outputs are a function of the binary
More informationBoolean Algebra and Logic Gates
Boolean Algebra and Logic Gates Binary logic is used in all of today's digital computers and devices Cost of the circuits is an important factor Finding simpler and cheaper but equivalent circuits can
More informationCh. 5 : Boolean Algebra &
Ch. 5 : Boolean Algebra & Reduction elektronik@fisika.ui.ac.id Objectives Should able to: Write Boolean equations for combinational logic applications. Utilize Boolean algebra laws and rules for simplifying
More informationObjectives: 1. Design procedure. 2. Fundamental circuits. 1. Design procedure
Objectives: 1. Design procedure. 2. undamental circuits. 1. Design procedure Design procedure has five steps: o Specification. o ormulation. o Optimization. o Technology mapping. o Verification. Specification:
More informationIntroduction to Computer Architecture
Boolean Operators The Boolean operators AND and OR are binary infix operators (that is, they take two arguments, and the operator appears between them.) A AND B D OR E We will form Boolean Functions of
More informationBOOLEAN ALGEBRA. Logic circuit: 1. From logic circuit to Boolean expression. Derive the Boolean expression for the following circuits.
COURSE / CODE DIGITAL SYSTEMS FUNDAMENTAL (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) BOOLEAN ALGEBRA Boolean Logic Boolean logic is a complete system for logical operations. It is used in countless
More informationCode No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems
More informationCode No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems
More informationGateLevel Minimization
GateLevel Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2011 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method
More informationUNIT II. Circuit minimization
UNIT II Circuit minimization The complexity of the digital logic gates that implement a Boolean function is directly related to the complexity of the algebraic expression from which the function is implemented.
More informationSpecifying logic functions
CSE4: Components and Design Techniques for Digital Systems Specifying logic functions Instructor: Mohsen Imani Slides from: Prof.Tajana Simunic and Dr.Pietro Mercati We have seen various concepts: Last
More informationCombinational Logic Circuits
Chapter 2 Combinational Logic Circuits J.J. Shann (Slightly trimmed by C.P. Chung) Chapter Overview 21 Binary Logic and Gates 22 Boolean Algebra 23 Standard Forms 24 TwoLevel Circuit Optimization
More informationDigital Logic Design (CEN120) (3+1)
Digital Logic Design (CEN120) (3+1) ASSISTANT PROFESSOR Engr. Syed Rizwan Ali, MS(CAAD)UK, PDG(CS)UK, PGD(PM)IR, BS(CE)PK HEC Certified Master Trainer (MTFPDP) PEC Certified Professional Engineer (COM/2531)
More informationR10. II B. Tech I Semester, Supplementary Examinations, May
SET  1 1. a) Convert the following decimal numbers into an equivalent binary numbers. i) 53.625 ii) 4097.188 iii) 167 iv) 0.4475 b) Add the following numbers using 2 s complement method. i) 48 and +31
More informationChapter 2 Boolean algebra and Logic Gates
Chapter 2 Boolean algebra and Logic Gates 2. Introduction In working with logic relations in digital form, we need a set of rules for symbolic manipulation which will enable us to simplify complex expressions
More informationCSCI 220: Computer Architecture I Instructor: Pranava K. Jha. Simplification of Boolean Functions using a Karnaugh Map
CSCI 22: Computer Architecture I Instructor: Pranava K. Jha Simplification of Boolean Functions using a Karnaugh Map Q.. Plot the following Boolean function on a Karnaugh map: f(a, b, c, d) = m(, 2, 4,
More informationEEE130 Digital Electronics I Lecture #4_1
EEE130 Digital Electronics I Lecture #4_1  Boolean Algebra and Logic Simplification  By Dr. Shahrel A. Suandi 46 Standard Forms of Boolean Expressions There are two standard forms: Sumofproducts form
More informationDesigning Computer Systems Boolean Algebra
Designing Computer Systems Boolean Algebra 08:34:45 PM 4 June 2013 BA1 Scott & Linda Wills Designing Computer Systems Boolean Algebra Programmable computers can exhibit amazing complexity and generality.
More informationCode No: 07A3EC03 Set No. 1
Code No: 07A3EC03 Set No. 1 II B.Tech I Semester Regular Examinations, November 2008 SWITCHING THEORY AND LOGIC DESIGN ( Common to Electrical & Electronic Engineering, Electronics & Instrumentation Engineering,
More information2.1 Binary Logic and Gates
1 EED2003 Digital Design Presentation 2: Boolean Algebra Asst. Prof.Dr. Ahmet ÖZKURT Asst. Prof.Dr Hakkı T. YALAZAN Based on the Lecture Notes by Jaeyoung Choi choi@comp.ssu.ac.kr Fall 2000 2.1 Binary
More information數位系統 Digital Systems 朝陽科技大學資工系. Speaker: FuwYi Yang 楊伏夷. 伏夷非征番, 道德經察政章 (Chapter 58) 伏者潛藏也道紀章 (Chapter 14) 道無形象, 視之不可見者曰夷
數位系統 Digital Systems Department of Computer Science and Information Engineering, Chaoyang University of Technology 朝陽科技大學資工系 Speaker: FuwYi Yang 楊伏夷 伏夷非征番, 道德經察政章 (Chapter 58) 伏者潛藏也道紀章 (Chapter 14) 道無形象,
More informationENGINEERS ACADEMY. 7. Given Boolean theorem. (a) A B A C B C A B A C. (b) AB AC BC AB BC. (c) AB AC BC A B A C B C.
Digital Electronics Boolean Function QUESTION BANK. The Boolean equation Y = C + C + C can be simplified to (a) (c) A (B + C) (b) AC (d) C. The Boolean equation Y = (A + B) (A + B) can be simplified to
More informationChapter 2: Combinational Systems
Uchechukwu Ofoegbu Chapter 2: Combinational Systems Temple University Adapted from Alan Marcovitz s Introduction to Logic and Computer Design Riddle Four switches can be turned on or off. One is the switch
More informationSWITCHING THEORY AND LOGIC CIRCUITS
SWITCHING THEORY AND LOGIC CIRCUITS COURSE OBJECTIVES. To understand the concepts and techniques associated with the number systems and codes 2. To understand the simplification methods (Boolean algebra
More informationCHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES
CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES This chapter in the book includes: Objectives Study Guide 9.1 Introduction 9.2 Multiplexers 9.3 ThreeState Buffers 9.4 Decoders and Encoders
More informationA B AB CD Objectives:
Objectives:. Four variables maps. 2. Simplification using prime implicants. 3. "on t care" conditions. 4. Summary.. Four variables Karnaugh maps Minterms A A m m m3 m2 A B C m4 C A B C m2 m8 C C m5 C m3
More informationObjectives: 1 Bolean Algebra. Eng. Ayman Metwali
Objectives: Chapter 3 : 1 Boolean Algebra Boolean Expressions Boolean Identities Simplification of Boolean Expressions Complements Representing Boolean Functions 2 Logic gates 3 Digital Components 4
More informationCMPE223/CMSE222 Digital Logic
CMPE223/CMSE222 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum ProductofSums Forms, Incompletely Specified Functions Terminology For a given term, each
More informationTWOLEVEL COMBINATIONAL LOGIC
TWOLEVEL COMBINATIONAL LOGIC OVERVIEW Canonical forms Tolevel simplification Boolean cubes Karnaugh maps QuineMcClusky (Tabulation) Method Don't care terms Canonical and Standard Forms Minterms and
More informationDKT 122/3 DIGITAL SYSTEM 1
Company LOGO DKT 122/3 DIGITAL SYSTEM 1 BOOLEAN ALGEBRA (PART 2) Boolean Algebra Contents Boolean Operations & Expression Laws & Rules of Boolean algebra DeMorgan s Theorems Boolean analysis of logic circuits
More informationProgrammable Logic Devices. Programmable Read Only Memory (PROM) Example
Programmable Logic Devices Programmable Logic Devices (PLDs) are the integrated circuits. They contain an array of AND gates & another array of OR gates. There are three kinds of PLDs based on the type
More information9/10/2016. The Dual Form Swaps 0/1 and AND/OR. ECE 120: Introduction to Computing. Every Boolean Expression Has a Dual Form
University of Illinois at UrbanaChampaign Dept. of Electrical and Computer Engineering ECE 120: Introduction to Computing Boolean Properties and Optimization The Dual Form Swaps 0/1 and AND/OR Boolean
More informationGateLevel Minimization
GateLevel Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method
More informationADAPTIVE MAP FOR SIMPLIFYING BOOLEAN EXPRESSIONS
ABSTRACT ADAPTIVE MAP FOR SIMPLIFYING BOOLEAN EXPRESSIONS Dr. Mohammed H. ALJammas Department of Computer and Information Engineering, College of Electronics Engineering, University of Mosul, Mosul 
More informationCombinational Circuits
Combinational Circuits Combinational circuit consists of an interconnection of logic gates They react to their inputs and produce their outputs by transforming binary information n input binary variables
More informationChapter 2. Boolean Algebra and Logic Gates
Chapter 2. Boolean Algebra and Logic Gates Tong In Oh 1 Basic Definitions 2 3 2.3 Axiomatic Definition of Boolean Algebra Boolean algebra: Algebraic structure defined by a set of elements, B, together
More information