Implementing an ISA, part II - Control

Size: px
Start display at page:

Download "Implementing an ISA, part II - Control"

Transcription

1 Implementing an IS, part II - Control David E. Culler CS61CL Nov 4, 2009 Lecture 10 11/4/09 UCB CS61CL F09 Lec 10 1

2 Review: TinyMIPS Reg-Reg instructions (op == 0) addu R[rd] := R[rs] + R[rt]; pc:=pc+4 subu R[rd] := R[rs] - R[rt]; pc:=pc+4 Reg-Immed (op!= 0) lw R[rt] := Mem[ R[ rs ] + signex(im16) ] sw Mem[ R[ rs ] + signex(im16) ] := R[rt] Jumps j PC := PC addr 00 jr PC := R[rs] Branches BEQ PC := (R[rs] == R[rt])? PC + signex(im16) : PC+4 BLTZ PC := (R[rs] < 0)? PC + signex(im16) : PC+4 11/4/09 UCB CS61CL F09 Lec 10 2

3 Review: DataPath + Control RM D +4 PC IR ~ B Ci + sel Bsel Dsel ld xt rs rt rd npc_sel ld_pc pc2 ld_ir i2d wrt m2d rt_sel ld_reg b2d sx_sel comp s2 s2d 11/4/09 UCB CS61CL F09 Lec 10 3

4 Control State Machine (abstract) ddu R[rd]:=R[rs]+R[rt]; I-Fetch IR := Mem[pc] reset ~reset&op==lw SubU R[rd] := R[rs]-R[rt]; LW R[rt] := mem[r[rs]+sx16]; SW mem[r[rs]+sx16] := R[rt]; J pc := pc addr 00 JR pc := R[rs] BR-taken pc := pc + sx16 00 BR-not taken pc := pc /4/09 UCB CS61CL F09 Lec 10 4

5 Ifetch: IR := mem[pc] RM D +4 PC IR ~ B Ci + sel Bsel Dsel ld xt rs rt rd npc_sel ld_pc pc2 ld_ir i2d wrt m2d rt_sel ld_reg b2d sx_sel comp s2 s2d RM_addr <- <- PC; (pc2, ~s2) IR_in <- D <- RM_data; (~i2d,m2d,~b2d,~s2d) IR := IR_in; (ld_ir,~ld_pc,~ld_reg, ~wrt) 11/4/09 UCB CS61CL F09 Lec 10 5

6 Control State Machine I-Fetch IR := Mem[pc] pc2,~s2,~ir2d, m2d,~b2d,~s2d,ld _ir,~ld_pc, ~ld_reg, ~wrt reset ~reset&op==lw ddu R[rd]:=R[rs]+R[rt]; SubU R[rd] := R[rs]-R[rt]; LW R[rt] := mem[r[rs]+sx16]; SW mem[r[rs]+sx16] := R[rt]; J pc := pc addr 00 JR pc := R[rs] BR-taken pc := pc + sx16 00 BR-not taken pc := pc /4/09 UCB CS61CL F09 Lec 10 6

7 Exec: R[rd]:=R[rs]+R[rt]; pc:=pc+4; RM D +4 PC IR ~ B Ci + sel Bsel Dsel ld xt rs rt rd npc_sel ld_pc pc2 ld_ir i2d wrt m2d rt_sel ld_reg b2d sx_sel comp s2 s2d npc_sel=0,ld_pc,~pc2,~ld_ir,~i2d,~wrt,~m2d,~rt_sel,ld_reg, ~b2d,~sx_sel,~comp,~s2,s2d 11/4/09 UCB CS61CL F09 Lec 10 7

8 Control State Machine ddu R[rd]:=R[rs]+R[rt]; npc_sel=0,ld_pc,~pc2,~ld_ir,~i2d,~wrt,~m2d, ~rt_sel,ld_reg,~b2d,~sx_sel,~comp,~s2,s2d SubU R[rd] := R[rs]-R[rt]; LW R[rt] := mem[r[rs]+sx16]; I-Fetch IR := Mem[pc] pc2,~s2,~ir2d, m2d,~b2d,~s2d,ld _ir,~ld_pc, ~ld_reg, ~wrt reset SW mem[r[rs]+sx16] := R[rt]; J pc := pc addr 00 JR pc := R[rs] BR-taken pc := pc + sx16 00 BR-not taken pc := pc /4/09 UCB CS61CL F09 Lec 10 8

9 Exec: R[rd]:=R[rs]-R[rt]; pc:=pc+4; RM D +4 PC IR ~ B Ci + sel Bsel Dsel ld xt rs rt rd npc_sel ld_pc pc2 ld_ir i2d wrt m2d rt_sel ld_reg b2d sx_sel comp s2 s2d npc_sel=0,ld_pc,~pc2,~ld_ir,~i2d,~wrt,~m2d,~rt_sel,ld_reg, ~b2d,~sx_sel,comp,~s2,s2d 11/4/09 UCB CS61CL F09 Lec 10 9

10 Exec LW: R[rt]:= Mem[R[rs]+SXim16]; RM D +4 PC IR ~ B Ci + sel Bsel Dsel ld xt rs rt rd npc_sel ld_pc pc2 ld_ir i2d wrt m2d rt_sel ld_reg b2d sx_sel comp s2 s2d npc_sel=0, ld_pc, m2d, rt_sel, ld_reg, sx_sel, s2 11/4/09 UCB CS61CL F09 Lec 10 10

11 Exec SW: Mem[R[rs]+SXim16] := R[rt] RM D +4 PC IR ~ B Ci + sel Bsel Dsel ld xt rs rt rd npc_sel ld_pc pc2 ld_ir i2d wrt m2d rt_sel ld_reg b2d sx_sel comp s2 s2d 11/4/09 UCB CS61CL F09 Lec 10 11

12 Exec J: PC := PC addr 00 RM D +4 PC IR ~ B Ci + sel Bsel Dsel ld xt rs rt rd npc_sel ld_pc pc2 ld_ir i2d wrt m2d rt_sel ld_reg b2d sx_sel comp s2 s2d npc_sel=1, ld_pc, i2d 11/4/09 UCB CS61CL F09 Lec 10 12

13 Exec JR: PC := R[rs] RM D +4 PC IR ~ B Ci + sel Bsel Dsel ld xt rs rt rd npc_sel ld_pc pc2 ld_ir i2d wrt m2d rt_sel ld_reg b2d sx_sel comp s2 s2d npc_sel=2, ld_pc, s2d, sx_sel=2 11/4/09 UCB CS61CL F09 Lec 10 13

14 Exec Br Taken: PC := PC + SX16 RM D +4 PC IR ~ B Ci + sel Bsel Dsel ld xt rs rt rd npc_sel ld_pc pc2 ld_ir i2d wrt m2d rt_sel ld_reg b2d sx_sel comp s2 s2d npc_sel=3, ld_pc, i2d 11/4/09 UCB CS61CL F09 Lec 10 14

15 Controller Specification 11/4/09 UCB CS61CL F09 Lec 10 15

16 dminstration HW7 due midnight Mid Term 2 Monday 11/9 5:30 7:30 RM: 145 Dwinelle alternate Friday 11/4 3:00-5:00 rm TB Review session Thurs Project 3 incremental lab check offs Flex lab mon (9-5) and tues (9-1) midterm final prep project 3 help 11/4/09 UCB CS61CL F09 Lec 10 16

17 Controller Implementation exec npc_sel clk reset op eq n s2d 11/4/09 UCB CS61CL F09 Lec 10 17

18 Combinational Logic per Ctrl Point exec exec pc2 ldpc exec op wrt 11/4/09 UCB CS61CL F09 Lec 10 18

19 Multiplexor Control I I I x 0 0 x x 0 0 op 11/4/09 UCB CS61CL F09 Lec 10 19

20 Faster Clock RM D ddr +4 PC IR B ~ B Ci S + sel Bsel Dsel ld xt rs rt rd npc_sel ld_pc pc2 ld_ir i2d wrt m2d rt_sel ld_reg b2d sx_sel comp s2 s2d Clock Period > Longest path from reg out to input + reg delay 11/4/09 UCB CS61CL F09 Lec 10 20

21 Multi-Cycle Controller State Machine ddu S:=+B; SubU S := B; LW S=+sx16; R[rd]:=S; R[rd]:=S; read MR:=S; R[rd]:=D I-Fetch IR := Mem[pc] Op / Dcd := R[rs], B := R[rt] SW S=+sx16; J pc := pc addr 00 JR pc := R[rs] BR-taken pc := pc + sx16 00 wrt MR:=S; MDR:=B BR-not taken pc := pc /4/09 UCB CS61CL F09 Lec 10 21

22 Time State control mem B Ci PC IR IR_ex mem IR_mem IR_wb Move control word through the stages Decode per stage ctive stage moves around the ring 11/4/09 UCB CS61CL F09 Lec 10 22

23 Time State Control RM D ddr +4 PC IR B ~ B Ci S + sel Bsel Dsel ld xt rs rt rd npc_sel ld_pc pc2 ld_ir i2d wrt m2d rt_sel ld_reg b2d sx_sel comp s2 s2d ifetch decode exec mem wb 11/4/09 UCB CS61CL F09 Lec 10 23

24 More regular multi-cycle execution ddu S:=+B; SubU S := B; LW S=+sx16; S :=S; S :=S; read MR:=S; R[rd]:=S; R[rd]:=S ; R[rd]:=D I-Fetch IR := Mem[pc] Op / Dcd := R[rs], B := R[rt] SW S=+sx16; J pc := pc addr 00 JR pc := R[rs] BR-taken pc := pc + sx16 00 wrt MR:=S; MDR:=B BR-not taken pc := pc /4/09 UCB CS61CL F09 Lec 10 24

25 Sequence of Multi-step Operations Operation implemented as sequence of step on distinct resources wash => dry => fold Multiple independent Operations IF DCD Ex Mem WB 11/4/09 UCB CS61CL F09 Lec 10 25

26 Technology Trends Clock Rate: Transistor Density: ~35% Chip rea: ~15% ~30% per year Transistors per chip: ~55% Total Performance Capability: ~100% by the time you graduate... 3x clock rate (>10 GHz) 10x transistor count (100 Billion transistors) 30x raw capability plus 16x dram density, 32x disk density (60% per year) Network bandwidth, 11/4/09 cs61cl f09 lec 5 26

27 Pipelining Overlap consecutive operations 11/4/09 UCB CS61CL F09 Lec 10 27

28 Definition: Performance Performance is in units of things per sec bigger is better If we are primarily concerned with response time performance(x) = 1 execution_time(x) " X is n times faster than Y" means Performance(X) Execution_time(Y) n = = Performance(Y) Execution_time(Y) 11/4/09 cs61cl f09 lec 5 28

29 Pipeline Performance N operations performed in k steps each Sequential Time: N*k Lower bound: N (1 every cycle) Pipeline Time: k 1 + N Bound on Speedup on k-stage pipeline < k Speedup(k,N) StartUp Cost: k-1 Peak Rate Half Power point = Time(1,N)/Time(k,N) = N*k / (N+k-1) N / (1+k/N) 11/4/09 UCB CS61CL F09 Lec 10 29

30 Performance Trends MIPS R /4/09 cs61cl f09 lec 5 30

31 Processor Performance (1.35X before, 1.55X now) 1.54X/yr 11/4/09 cs61cl f09 lec 5 31

32 Pipelined control imem B Ci Dmem PC IR IR_ex IR_mem IR_wb 11/4/09 UCB CS61CL F09 Lec 10 32

33 Pipelined Instruction Execution Fetch Instruction Every cycle Launch into a pipeline What if they are not independent? structural hazards» two operations need to use same resource data dependence» later instruction needs to use the value produce by an earlier on Detect Wait till hazard clears 11/4/09 UCB CS61CL F09 Lec 10 33

34 Pipelined Bubble imem B Ci Dmem PC IR IR_ex IR_mem IR_wb 11/4/09 UCB CS61CL F09 Lec 10 34

Implementing an Instruction Set

Implementing an Instruction Set Implementing an Instruction Set David E. Culler CS61CL Oct 28, 2009 Lecture 9 10/28/09 UCB CS61CL F09 Lec 9 1 Review: Synchronous Circuit Design Combinational Logic Blocks (CL) cyclic no internal state

More information

CS61CL Machine Structures. Lec 5 Instruction Set Architecture

CS61CL Machine Structures. Lec 5 Instruction Set Architecture CS61CL Machine Structures Lec Instruction Set Architecture David Culler Electrical Engineering and Computer Sciences University of California, Berkeley What is Computer Architecture? Applications Compiler

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #19: Pipelining II 2005-07-21 Andy Carle CS 61C L19 Pipelining II (1) Review: Datapath for MIPS PC instruction memory rd rs rt registers

More information

CPU Design Steps. EECC550 - Shaaban

CPU Design Steps. EECC550 - Shaaban CPU Design Steps 1. Analyze instruction set operations using independent RTN => datapath requirements. 2. Select set of datapath components & establish clock methodology. 3. Assemble datapath meeting the

More information

EECS150 - Digital Design Lecture 10- CPU Microarchitecture. Processor Microarchitecture Introduction

EECS150 - Digital Design Lecture 10- CPU Microarchitecture. Processor Microarchitecture Introduction EECS150 - Digital Design Lecture 10- CPU Microarchitecture Feb 18, 2010 John Wawrzynek Spring 2010 EECS150 - Lec10-cpu Page 1 Processor Microarchitecture Introduction Microarchitecture: how to implement

More information

Designing a Multicycle Processor

Designing a Multicycle Processor Designing a Multicycle Processor Arquitectura de Computadoras Arturo Díaz D PérezP Centro de Investigación n y de Estudios Avanzados del IPN adiaz@cinvestav.mx Arquitectura de Computadoras Multicycle-

More information

Adding Support for jal to Single Cycle Datapath (For More Practice Exercise 5.20)

Adding Support for jal to Single Cycle Datapath (For More Practice Exercise 5.20) Adding Support for jal to Single Cycle Datapath (For More Practice Exercise 5.20) The MIPS jump and link instruction, jal is used to support procedure calls by jumping to jump address (similar to j ) and

More information

CS 61C: Great Ideas in Computer Architecture Control and Pipelining

CS 61C: Great Ideas in Computer Architecture Control and Pipelining CS 6C: Great Ideas in Computer Architecture Control and Pipelining Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs6c/sp6 Datapath Control Signals ExtOp: zero, sign

More information

CS 152 Computer Architecture and Engineering. Lecture 10: Designing a Multicycle Processor

CS 152 Computer Architecture and Engineering. Lecture 10: Designing a Multicycle Processor CS 152 Computer Architecture and Engineering Lecture 1: Designing a Multicycle Processor October 1, 1997 Dave Patterson (http.cs.berkeley.edu/~patterson) lecture slides: http://www-inst.eecs.berkeley.edu/~cs152/

More information

EECS150 - Digital Design Lecture 9- CPU Microarchitecture. Watson: Jeopardy-playing Computer

EECS150 - Digital Design Lecture 9- CPU Microarchitecture. Watson: Jeopardy-playing Computer EECS150 - Digital Design Lecture 9- CPU Microarchitecture Feb 15, 2011 John Wawrzynek Spring 2011 EECS150 - Lec09-cpu Page 1 Watson: Jeopardy-playing Computer Watson is made up of a cluster of ninety IBM

More information

CS 61C: Great Ideas in Computer Architecture. MIPS CPU Datapath, Control Introduction

CS 61C: Great Ideas in Computer Architecture. MIPS CPU Datapath, Control Introduction CS 61C: Great Ideas in Computer Architecture MIPS CPU Datapath, Control Introduction Instructor: Alan Christopher 7/28/214 Summer 214 -- Lecture #2 1 Review of Last Lecture Critical path constrains clock

More information

ECE170 Computer Architecture. Single Cycle Control. Review: 3b: Add & Subtract. Review: 3e: Store Operations. Review: 3d: Load Operations

ECE170 Computer Architecture. Single Cycle Control. Review: 3b: Add & Subtract. Review: 3e: Store Operations. Review: 3d: Load Operations ECE7 Computer Architecture Single Cycle Control Review: 3a: Overview of the Fetch Unit The common operations Fetch the : mem[] Update the program counter: Sequential Code: < + Branch and Jump: < something

More information

Lecture 3. Pipelining. Dr. Soner Onder CS 4431 Michigan Technological University 9/23/2009 1

Lecture 3. Pipelining. Dr. Soner Onder CS 4431 Michigan Technological University 9/23/2009 1 Lecture 3 Pipelining Dr. Soner Onder CS 4431 Michigan Technological University 9/23/2009 1 A "Typical" RISC ISA 32-bit fixed format instruction (3 formats) 32 32-bit GPR (R0 contains zero, DP take pair)

More information

CISC 662 Graduate Computer Architecture Lecture 5 - Pipeline. Pipelining. Pipelining the Idea. Similar to assembly line in a factory:

CISC 662 Graduate Computer Architecture Lecture 5 - Pipeline. Pipelining. Pipelining the Idea. Similar to assembly line in a factory: CISC 662 Graduate Computer rchitecture Lecture 5 - Pipeline ichela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer rchitecture,

More information

361 datapath.1. Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath

361 datapath.1. Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath 361 datapath.1 Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath Outline of Today s Lecture Introduction Where are we with respect to the BIG picture? Questions and Administrative

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #19 Designing a Single-Cycle CPU 27-7-26 Scott Beamer Instructor AI Focuses on Poker CS61C L19 CPU Design : Designing a Single-Cycle CPU

More information

Lecture 7 Pipelining. Peng Liu.

Lecture 7 Pipelining. Peng Liu. Lecture 7 Pipelining Peng Liu liupeng@zju.edu.cn 1 Review: The Single Cycle Processor 2 Review: Given Datapath,RTL -> Control Instruction Inst Memory Adr Op Fun Rt

More information

The Big Picture: Where are We Now? EEM 486: Computer Architecture. Lecture 3. Designing a Single Cycle Datapath

The Big Picture: Where are We Now? EEM 486: Computer Architecture. Lecture 3. Designing a Single Cycle Datapath The Big Picture: Where are We Now? EEM 486: Computer Architecture Lecture 3 The Five Classic Components of a Computer Processor Input Control Memory Designing a Single Cycle path path Output Today s Topic:

More information

Pipeline Overview. Dr. Jiang Li. Adapted from the slides provided by the authors. Jiang Li, Ph.D. Department of Computer Science

Pipeline Overview. Dr. Jiang Li. Adapted from the slides provided by the authors. Jiang Li, Ph.D. Department of Computer Science Pipeline Overview Dr. Jiang Li Adapted from the slides provided by the authors Outline MIPS An ISA for Pipelining 5 stage pipelining Structural and Data Hazards Forwarding Branch Schemes Exceptions and

More information

EI338: Computer Systems and Engineering (Computer Architecture & Operating Systems)

EI338: Computer Systems and Engineering (Computer Architecture & Operating Systems) EI338: Computer Systems and Engineering (Computer Architecture & Operating Systems) Chentao Wu 吴晨涛 Associate Professor Dept. of Computer Science and Engineering Shanghai Jiao Tong University SEIEE Building

More information

COMP303 Computer Architecture Lecture 9. Single Cycle Control

COMP303 Computer Architecture Lecture 9. Single Cycle Control COMP33 Computer Architecture Lecture 9 Single Cycle Control A Single Cycle Datapath We have everything except control signals (underlined) RegDst busw Today s lecture will look at how to generate the control

More information

Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining

Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining Single-Cycle Design Problems Assuming fixed-period clock every instruction datapath uses one

More information

CISC 662 Graduate Computer Architecture Lecture 5 - Pipeline Pipelining

CISC 662 Graduate Computer Architecture Lecture 5 - Pipeline Pipelining CISC 662 Graduate Computer rchitecture Lecture 5 - Pipeline Pipelining ichela Taufer http://www.cis.udel.edu/~taufer/courses Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer

More information

Computer Architecture. Lecture 6.1: Fundamentals of

Computer Architecture. Lecture 6.1: Fundamentals of CS3350B Computer Architecture Winter 2015 Lecture 6.1: Fundamentals of Instructional Level Parallelism Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and

More information

ECS 154B Computer Architecture II Spring 2009

ECS 154B Computer Architecture II Spring 2009 ECS 154B Computer Architecture II Spring 2009 Pipelining Datapath and Control 6.2-6.3 Partially adapted from slides by Mary Jane Irwin, Penn State And Kurtis Kredo, UCD Pipelined CPU Break execution into

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19 CO2-3224 Computer Architecture and Programming Languages CAPL Lecture 8 & 9 Dr. Kinga Lipskoch Fall 27 Single Cycle Disadvantages & Advantages Uses the clock cycle inefficiently the clock cycle must be

More information

Working on the Pipeline

Working on the Pipeline Computer Science 6C Spring 27 Working on the Pipeline Datapath Control Signals Computer Science 6C Spring 27 MemWr: write memory MemtoReg: ALU; Mem RegDst: rt ; rd RegWr: write register 4 PC Ext Imm6 Adder

More information

CS 4200/5200 Computer Architecture I

CS 4200/5200 Computer Architecture I CS 4200/5200 Computer Architecture I MIPS Instruction Set Architecture Dr. Xiaobo Zhou Department of Computer Science CS420/520 Lec3.1 UC. Colorado Springs Adapted from UCB97 & UCB03 Review: Organizational

More information

EEM 486: Computer Architecture. Lecture 3. Designing Single Cycle Control

EEM 486: Computer Architecture. Lecture 3. Designing Single Cycle Control EEM 48: Computer Architecture Lecture 3 Designing Single Cycle The Big Picture: Where are We Now? Processor Input path Output Lec 3.2 An Abstract View of the Implementation Ideal Address Net Address PC

More information

Review. N-bit adder-subtractor done using N 1- bit adders with XOR gates on input. Lecture #19 Designing a Single-Cycle CPU

Review. N-bit adder-subtractor done using N 1- bit adders with XOR gates on input. Lecture #19 Designing a Single-Cycle CPU CS6C L9 CPU Design : Designing a Single-Cycle CPU () insteecsberkeleyedu/~cs6c CS6C : Machine Structures Lecture #9 Designing a Single-Cycle CPU 27-7-26 Scott Beamer Instructor AI Focuses on Poker Review

More information

Major CPU Design Steps

Major CPU Design Steps Datapath Major CPU Design Steps. Analyze instruction set operations using independent RTN ISA => RTN => datapath requirements. This provides the the required datapath components and how they are connected

More information

COMP303 - Computer Architecture Lecture 8. Designing a Single Cycle Datapath

COMP303 - Computer Architecture Lecture 8. Designing a Single Cycle Datapath COMP33 - Computer Architecture Lecture 8 Designing a Single Cycle Datapath The Big Picture The Five Classic Components of a Computer Processor Input Control Memory Datapath Output The Big Picture: The

More information

Pipelining. Maurizio Palesi

Pipelining. Maurizio Palesi * Pipelining * Adapted from David A. Patterson s CS252 lecture slides, http://www.cs.berkeley/~pattrsn/252s98/index.html Copyright 1998 UCB 1 References John L. Hennessy and David A. Patterson, Computer

More information

Pipeline: Introduction

Pipeline: Introduction Pipeline: Introduction These slides are derived from: CSCE430/830 Computer Architecture course by Prof. Hong Jiang and Dave Patterson UCB Some figures and tables have been derived from : Computer System

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 13: Pipelining. Krste Asanović & Randy Katz

CS 61C: Great Ideas in Computer Architecture. Lecture 13: Pipelining. Krste Asanović & Randy Katz CS 61C: Great Ideas in Computer Architecture Lecture 13: Pipelining Krste Asanović & Randy Katz http://inst.eecs.berkeley.edu/~cs61c/fa17 RISC-V Pipeline Pipeline Control Hazards Structural Data R-type

More information

CPS104 Computer Organization and Programming Lecture 19: Pipelining. Robert Wagner

CPS104 Computer Organization and Programming Lecture 19: Pipelining. Robert Wagner CPS104 Computer Organization and Programming Lecture 19: Pipelining Robert Wagner cps 104 Pipelining..1 RW Fall 2000 Lecture Overview A Pipelined Processor : Introduction to the concept of pipelined processor.

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 25 CPU Design: Designing a Single-cycle CPU Lecturer SOE Dan Garcia www.cs.berkeley.edu/~ddgarcia T-Mobile s Wi-Fi / Cell phone

More information

Computer Organization and Structure

Computer Organization and Structure Computer Organization and Structure 1. Assuming the following repeating pattern (e.g., in a loop) of branch outcomes: Branch outcomes a. T, T, NT, T b. T, T, T, NT, NT Homework #4 Due: 2014/12/9 a. What

More information

Lecture 6 Datapath and Controller

Lecture 6 Datapath and Controller Lecture 6 Datapath and Controller Peng Liu liupeng@zju.edu.cn Windows Editor and Word Processing UltraEdit, EditPlus Gvim Linux or Mac IOS Emacs vi or vim Word Processing(Windows, Linux, and Mac IOS) LaTex

More information

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin. School of Information Science and Technology SIST

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin.   School of Information Science and Technology SIST CS 110 Computer Architecture Pipelining Guest Lecture: Shu Yin http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University Slides based on UC Berkley's CS61C

More information

Computer Architecture

Computer Architecture Lecture 3: Pipelining Iakovos Mavroidis Computer Science Department University of Crete 1 Previous Lecture Measurements and metrics : Performance, Cost, Dependability, Power Guidelines and principles in

More information

The Processor Pipeline. Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes.

The Processor Pipeline. Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes. The Processor Pipeline Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes. Pipeline A Basic MIPS Implementation Memory-reference instructions Load Word (lw) and Store Word (sw) ALU instructions

More information

EECS 151/251A Fall 2017 Digital Design and Integrated Circuits. Instructor: John Wawrzynek and Nicholas Weaver. Lecture 13 EE141

EECS 151/251A Fall 2017 Digital Design and Integrated Circuits. Instructor: John Wawrzynek and Nicholas Weaver. Lecture 13 EE141 EECS 151/251A Fall 2017 Digital Design and Integrated Circuits Instructor: John Wawrzynek and Nicholas Weaver Lecture 13 Project Introduction You will design and optimize a RISC-V processor Phase 1: Design

More information

Lecture Topics. Announcements. Today: Single-Cycle Processors (P&H ) Next: continued. Milestone #3 (due 2/9) Milestone #4 (due 2/23)

Lecture Topics. Announcements. Today: Single-Cycle Processors (P&H ) Next: continued. Milestone #3 (due 2/9) Milestone #4 (due 2/23) Lecture Topics Today: Single-Cycle Processors (P&H 4.1-4.4) Next: continued 1 Announcements Milestone #3 (due 2/9) Milestone #4 (due 2/23) Exam #1 (Wednesday, 2/15) 2 1 Exam #1 Wednesday, 2/15 (3:00-4:20

More information

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 CPU Design: The Single-Cycle I ! Nasty new windows vulnerability!

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 CPU Design: The Single-Cycle I ! Nasty new windows vulnerability! inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 CPU Design: The Single-Cycle I CS61C L18 CPU Design: The Single-Cycle I (1)! 2010-07-21!!!Instructor Paul Pearce! Nasty new windows vulnerability!

More information

Pipelining. CSC Friday, November 6, 2015

Pipelining. CSC Friday, November 6, 2015 Pipelining CSC 211.01 Friday, November 6, 2015 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory register file ALU data memory register file Not

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware 4.1 Introduction We will examine two MIPS implementations

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

ECE 2300 Digital Logic & Computer Organization. More Single Cycle Microprocessor

ECE 2300 Digital Logic & Computer Organization. More Single Cycle Microprocessor ECE 23 Digital Logic & Computer Organization Spring 28 More Single Cycle Microprocessor Lecture 6: HW6 due tomorrow Announcements Prelim 2: Tues April 7, 7:3pm, Phillips Hall Coverage: Lectures 8~6 Inform

More information

Outline. EEL-4713 Computer Architecture Designing a Single Cycle Datapath

Outline. EEL-4713 Computer Architecture Designing a Single Cycle Datapath Outline EEL-473 Computer Architecture Designing a Single Cycle path Introduction The steps of designing a processor path and timing for register-register operations path for logical operations with immediates

More information

What do we have so far? Multi-Cycle Datapath (Textbook Version)

What do we have so far? Multi-Cycle Datapath (Textbook Version) What do we have so far? ulti-cycle Datapath (Textbook Version) CPI: R-Type = 4, Load = 5, Store 4, Branch = 3 Only one instruction being processed in datapath How to lower CPI further? #1 Lec # 8 Summer2001

More information

CS61C : Machine Structures

CS61C : Machine Structures CS 61C L path (1) insteecsberkeleyedu/~cs61c/su6 CS61C : Machine Structures Lecture # path natomy: 5 components of any Computer Personal Computer -7-25 This week Computer Processor ( brain ) path ( brawn

More information

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle?

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle? CSE 2021: Computer Organization Single Cycle (Review) Lecture-10b CPU Design : Pipelining-1 Overview, Datapath and control Shakil M. Khan 2 Single Cycle with Jump Multi-Cycle Implementation Instruction:

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 4 Processor Part 2: Pipelining (Ch.4) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations from Mike

More information

Processor. Han Wang CS3410, Spring 2012 Computer Science Cornell University. See P&H Chapter , 4.1 4

Processor. Han Wang CS3410, Spring 2012 Computer Science Cornell University. See P&H Chapter , 4.1 4 Processor Han Wang CS3410, Spring 2012 Computer Science Cornell University See P&H Chapter 2.16 20, 4.1 4 Announcements Project 1 Available Design Document due in one week. Final Design due in three weeks.

More information

Chapter 4 The Processor 1. Chapter 4A. The Processor

Chapter 4 The Processor 1. Chapter 4A. The Processor Chapter 4 The Processor 1 Chapter 4A The Processor Chapter 4 The Processor 2 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

Recap: The MIPS Subset ADD and subtract EEL Computer Architecture shamt funct add rd, rs, rt Single-Cycle Control Logic sub rd, rs, rt

Recap: The MIPS Subset ADD and subtract EEL Computer Architecture shamt funct add rd, rs, rt Single-Cycle Control Logic sub rd, rs, rt Recap: The MIPS Subset EEL-47 - Computer Architecture Single-Cycle Logic ADD and subtract add rd, rs, rt sub rd, rs, rt OR Imm: ori rt, rs, imm 2 rs rt rd shamt t bits 5 bits 5 bits 5 bits 5 bits bits

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Single Cycle MIPS Processor Stephen. Edwards Columbia University Summer 26 Illustrations Copyright 27 Elsevier The path The lw The sw R-Type s The beq The Controller Encoding

More information

361 control.1. EECS 361 Computer Architecture Lecture 9: Designing Single Cycle Control

361 control.1. EECS 361 Computer Architecture Lecture 9: Designing Single Cycle Control 36 control. EECS 36 Computer Architecture Lecture 9: Designing Single Cycle Control Recap: The MIPS Subset ADD and subtract add rd, rs, rt sub rd, rs, rt OR Imm: ori rt, rs, imm6 3 3 26 2 6 op rs rt rd

More information

ECE473 Computer Architecture and Organization. Pipeline: Control Hazard

ECE473 Computer Architecture and Organization. Pipeline: Control Hazard Computer Architecture and Organization Pipeline: Control Hazard Lecturer: Prof. Yifeng Zhu Fall, 2015 Portions of these slides are derived from: Dave Patterson UCB Lec 15.1 Pipelining Outline Introduction

More information

CS 61C: Great Ideas in Computer Architecture Datapath. Instructors: John Wawrzynek & Vladimir Stojanovic

CS 61C: Great Ideas in Computer Architecture Datapath. Instructors: John Wawrzynek & Vladimir Stojanovic CS 61C: Great Ideas in Computer Architecture Datapath Instructors: John Wawrzynek & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/fa15 1 Components of a Computer Processor Control Enable? Read/Write

More information

Computer Systems Architecture Spring 2016

Computer Systems Architecture Spring 2016 Computer Systems Architecture Spring 2016 Lecture 01: Introduction Shuai Wang Department of Computer Science and Technology Nanjing University [Adapted from Computer Architecture: A Quantitative Approach,

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 35: Final Exam Review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Material from Earlier in the Semester Throughput and latency

More information

Lecture #17: CPU Design II Control

Lecture #17: CPU Design II Control Lecture #7: CPU Design II Control 25-7-9 Anatomy: 5 components of any Computer Personal Computer Computer Processor Control ( brain ) This week ( ) path ( brawn ) (where programs, data live when running)

More information

Lecture 05: Pipelining: Basic/ Intermediate Concepts and Implementation

Lecture 05: Pipelining: Basic/ Intermediate Concepts and Implementation Lecture 05: Pipelining: Basic/ Intermediate Concepts and Implementation CSE 564 Computer Architecture Summer 2017 Department of Computer Science and Engineering Yonghong Yan yan@oakland.edu www.secs.oakland.edu/~yan

More information

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards CISC 662 Graduate Computer Architecture Lecture 6 - Hazards Michela Taufer http://www.cis.udel.edu/~taufer/teaching/cis662f07 Powerpoint Lecture Notes from John Hennessy and David Patterson s: Computer

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition The Processor - Introduction

More information

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor.

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor. COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor - Introduction

More information

Systems Architecture

Systems Architecture Systems Architecture Lecture 15: A Simple Implementation of MIPS Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan Some or all figures from Computer Organization and Design: The Hardware/Software

More information

Review: Abstract Implementation View

Review: Abstract Implementation View Review: Abstract Implementation View Split memory (Harvard) model - single cycle operation Simplified to contain only the instructions: memory-reference instructions: lw, sw arithmetic-logical instructions:

More information

Overview. Appendix A. Pipelining: Its Natural! Sequential Laundry 6 PM Midnight. Pipelined Laundry: Start work ASAP

Overview. Appendix A. Pipelining: Its Natural! Sequential Laundry 6 PM Midnight. Pipelined Laundry: Start work ASAP Overview Appendix A Pipelining: Basic and Intermediate Concepts Basics of Pipelining Pipeline Hazards Pipeline Implementation Pipelining + Exceptions Pipeline to handle Multicycle Operations 1 2 Unpipelined

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 17: Pipelining Wrapup Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Outline The textbook includes lots of information Focus on

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 28: Single- Cycle CPU Datapath Control Part 1

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 28: Single- Cycle CPU Datapath Control Part 1 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 28: Single- Cycle CPU Datapath Control Part 1 Guest Lecturer: Sagar Karandikar hfp://inst.eecs.berkeley.edu/~cs61c/ http://research.microsoft.com/apps/pubs/default.aspx?id=212001!

More information

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture The Processor Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut CSE3666: Introduction to Computer Architecture Introduction CPU performance factors Instruction count

More information

CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath

CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath CPE 442 single-cycle datapath.1 Outline of Today s Lecture Recap and Introduction Where are we with respect to the BIG picture?

More information

Recap: A Single Cycle Datapath. CS 152 Computer Architecture and Engineering Lecture 8. Single-Cycle (Con t) Designing a Multicycle Processor

Recap: A Single Cycle Datapath. CS 152 Computer Architecture and Engineering Lecture 8. Single-Cycle (Con t) Designing a Multicycle Processor CS 52 Computer Architecture and Engineering Lecture 8 Single-Cycle (Con t) Designing a Multicycle Processor February 23, 24 John Kubiatowicz (www.cs.berkeley.edu/~kubitron) lecture slides: http://inst.eecs.berkeley.edu/~cs52/

More information

Processor Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Processor Architecture. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Processor Architecture Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Moore s Law Gordon Moore @ Intel (1965) 2 Computer Architecture Trends (1)

More information

EE 457 Unit 6a. Basic Pipelining Techniques

EE 457 Unit 6a. Basic Pipelining Techniques EE 47 Unit 6a Basic Pipelining Techniques 2 Pipelining Introduction Consider a drink bottling plant Filling the bottle = 3 sec. Placing the cap = 3 sec. Labeling = 3 sec. Would you want Machine = Does

More information

COSC 6385 Computer Architecture - Pipelining

COSC 6385 Computer Architecture - Pipelining COSC 6385 Computer Architecture - Pipelining Fall 2006 Some of the slides are based on a lecture by David Culler, Instruction Set Architecture Relevant features for distinguishing ISA s Internal storage

More information

Appendix A. Overview

Appendix A. Overview Appendix A Pipelining: Basic and Intermediate Concepts 1 Overview Basics of Pipelining Pipeline Hazards Pipeline Implementation Pipelining + Exceptions Pipeline to handle Multicycle Operations 2 1 Unpipelined

More information

CENG 3420 Lecture 06: Datapath

CENG 3420 Lecture 06: Datapath CENG 342 Lecture 6: Datapath Bei Yu byu@cse.cuhk.edu.hk CENG342 L6. Spring 27 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified to contain only: memory-reference

More information

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 19 CPU Design: The Single-Cycle II & Control !

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 19 CPU Design: The Single-Cycle II & Control ! inst.eecs.berkeley.edu/~cs6c CS6C : Machine Structures Lecture 9 CPU Design: The Single-Cycle II & Control 2-7-22!!!Instructor Paul Pearce! Dell may have shipped infected motherboards! Dell is warning

More information

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Introduction Chapter 4.1 Chapter 4.2 Review: MIPS (RISC) Design Principles Simplicity favors regularity fixed size instructions small number

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Pipelining James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy What is Pipelining? Pipelining

More information

CS 110 Computer Architecture Single-Cycle CPU Datapath & Control

CS 110 Computer Architecture Single-Cycle CPU Datapath & Control CS Computer Architecture Single-Cycle CPU Datapath & Control Instructor: Sören Schwertfeger http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University Slides

More information

Ch 5: Designing a Single Cycle Datapath

Ch 5: Designing a Single Cycle Datapath Ch 5: esigning a Single Cycle path Computer Systems Architecture CS 365 The Big Picture: Where are We Now? The Five Classic Components of a Computer Processor Control Memory path Input Output Today s Topic:

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

Pipelining: Overview. CPSC 252 Computer Organization Ellen Walker, Hiram College

Pipelining: Overview. CPSC 252 Computer Organization Ellen Walker, Hiram College Pipelining: Overview CPSC 252 Computer Organization Ellen Walker, Hiram College Pipelining the Wash Divide into 4 steps: Wash, Dry, Fold, Put Away Perform the steps in parallel Wash 1 Wash 2, Dry 1 Wash

More information

CS 61C Summer 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control)

CS 61C Summer 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control) CS 61C Summer 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control) 1) If this exam were a CPU, you d be halfway through the pipeline (Sp15 Final) We found that the instruction fetch and memory stages

More information

MIPS-Lite Single-Cycle Control

MIPS-Lite Single-Cycle Control MIPS-Lite Single-Cycle Control COE68: Computer Organization and Architecture Dr. Gul N. Khan http://www.ee.ryerson.ca/~gnkhan Electrical and Computer Engineering Ryerson University Overview Single cycle

More information

Processor Architecture

Processor Architecture Processor Architecture Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE2030: Introduction to Computer Systems, Spring 2018, Jinkyu Jeong (jinkyu@skku.edu)

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Science 6 PM 7 8 9 10 11 Midnight Time 30 40 20 30 40 20

More information

ECE468 Computer Organization and Architecture. Designing a Single Cycle Datapath

ECE468 Computer Organization and Architecture. Designing a Single Cycle Datapath ECE468 Computer Organization and Architecture Designing a Single Cycle Datapath ECE468 datapath1 The Big Picture: Where are We Now? The Five Classic Components of a Computer Processor Control Input Datapath

More information

CS3350B Computer Architecture Winter Lecture 5.7: Single-Cycle CPU: Datapath Control (Part 2)

CS3350B Computer Architecture Winter Lecture 5.7: Single-Cycle CPU: Datapath Control (Part 2) CS335B Computer Architecture Winter 25 Lecture 5.7: Single-Cycle CPU: Datapath Control (Part 2) Marc Moreno Maza www.csd.uwo.ca/courses/cs335b [Adapted from lectures on Computer Organization and Design,

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Perfect Student CS 343 Final Exam May 19, 2011 Student ID: 9999 Exam ID: 9636 Instructions Use pencil, if you have one. For multiple choice

Perfect Student CS 343 Final Exam May 19, 2011 Student ID: 9999 Exam ID: 9636 Instructions Use pencil, if you have one. For multiple choice Instructions Page 1 of 7 Use pencil, if you have one. For multiple choice questions, circle the letter of the one best choice unless the question specifically says to select all correct choices. There

More information

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14 MIPS Pipelining Computer Organization Architectures for Embedded Computing Wednesday 8 October 14 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition, 2011, MK

More information

CS3350B Computer Architecture Quiz 3 March 15, 2018

CS3350B Computer Architecture Quiz 3 March 15, 2018 CS3350B Computer Architecture Quiz 3 March 15, 2018 Student ID number: Student Last Name: Question 1.1 1.2 1.3 2.1 2.2 2.3 Total Marks The quiz consists of two exercises. The expected duration is 30 minutes.

More information

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI CSCI 42: Computer Architectures The Processor (2) Fengguang Song Department of Computer & Information Science IUPUI Full Datapath Branch Target Instruction Fetch Immediate 4 Today s Contents We have looked

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #17 Single Cycle CPU Datapath CPS today! 2005-10-31 There is one handout today at the front and back of the room! Lecturer PSOE, new dad

More information