UC Berkeley CS61C : Machine Structures

Size: px
Start display at page:

Download "UC Berkeley CS61C : Machine Structures"

Transcription

1 inst.eecs.berkeley.edu/~cs6c UC Berkeley CS6C : Machine Structures Lecture 26 Single-cycle CPU Control Exhausted TA Ben Sussman Qutrits Bring Quantum Computers Closer: An Australian group has built and tested logic gates that convert qubits into qutrits (three-level quantum states)! But who cares: new iphones soon? Ben hopes so CS6C L27 Single-Cycle CPU Control ()

2 Review: A Single Cycle Datapath We have everything except control signals RegDst Rd RegWr busw 5 imm6 npc_sel Rt Rs Rt 5 5 Rw Ra Rb RegFile 6 Extender busa busb instr fetch unit zero Instruction<3:> <2:25> Rs ALUctr = ALU Data In <6:2> Rt MemWr <:5> Rd WrEn Adr <:5> Data Imm6 MemtoReg CS6C L27 Single-Cycle CPU Control (2) ExtOp ALUSrc

3 Recap: Meaning of the Control Signals npc_sel: +4 PC < PC + 4 n =next br PC < PC {SignExt(Im6), } Later in lecture: higher-level connection between mux and branch condition 4 PC Ext Adder Adder npc_sel Mux PC Inst Address CS6C L27 Single-Cycle CPU Control (3) imm6

4 Recap: Meaning of the Control Signals ExtOp: zero, sign ALUsrc: regb; MemWr: write memory MemtoReg: ALU; Mem immed RegDst: rt ; rd ALUctr: ADD, SUB, OR RegWr: write register RegDst RegWr busw Rd 5 Rt imm6 Rs Rt 5 5 Rw Ra Rb RegFile 6 ExtOp Extender busa busb ALUSrc ALUctr MemtoReg MemWr ALU Data In WrEn Adr Data CS6C L27 Single-Cycle CPU Control (4)

5 RTL: The Add Instruction op rs rt rd shamt funct 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits add rd, rs, rt MEM[PC] Fetch the instruction from memory R[rd] = R[rs] + R[rt] The actual operation PC = PC + 4 Calculate the next instructionʼs address CS6C L27 Single-Cycle CPU Control (5)

6 Instruction Fetch Unit at the Beginning of Add Fetch the instruction from Instruction memory: Instruction = MEM[PC] same for all instructions Inst Instruction<3:> 4 PC Ext Adder Adder npc_sel PC Mux Inst Address imm6 CS6C L27 Single-Cycle CPU Control (6)

7 The Single Cycle Datapath during Add op rs rt rd shamt funct R[rd] = R[rs] + R[rt] RegDst= Rd RegWr= busw npc_sel=+4 5 Rt imm6 Rs Rt 5 5 Rw Ra Rb RegFile 6 ExtOp=x Extender busa busb instr fetch unit zero 6 ALUSrc= Instruction<3:> <2:25> Rs Rt Rd Imm6 ALUctr=ADD MemtoReg= = ALU Data In <6:2> <:5> MemWr= WrEn Adr <:5> Data CS6C L27 Single-Cycle CPU Control (7)

8 Instruction Fetch Unit at the End of Add PC = PC + 4 This is the same for all instructions except: Branch and Jump Inst 4 PC Ext npc_sel=+4 Adder Adder PC Mux Inst Address imm6 CS6C L27 Single-Cycle CPU Control (8)

9 Single Cycle Datapath during Or Immediate? op rs rt immediate R[rt] = R[rs] OR ZeroExt[Imm6] RegDst= Rd RegWr= busw npc_sel= 5 Rt imm6 Rs Rt 5 5 Rw Ra Rb RegFile 6 ExtOp= Extender busa busb instr fetch unit zero ALUSrc= Instruction<3:> <2:25> Rs Rt Rd Imm6 ALUctr= MemtoReg= = ALU Data In <6:2> <:5> MemWr= WrEn Adr <:5> Data CS6C L27 Single-Cycle CPU Control (9)

10 Single Cycle Datapath during Or Immediate? op rs rt immediate R[rt] = R[rs] OR ZeroExt[Imm6] RegDst= Rd RegWr= busw npc_sel=+4 5 Rt imm6 Rs Rt 5 5 Rw Ra Rb RegFile 6 ExtOp=zero Extender busa busb 6 instr fetch unit zero ALUSrc= Instruction<3:> <2:25> Rs Rt Rd Imm6 ALUctr=OR MemtoReg= = ALU Data In <6:2> <:5> MemWr= WrEn Adr <:5> Data CS6C L27 Single-Cycle CPU Control ()

11 The Single Cycle Datapath during Load? op rs rt immediate R[rt] = Data {R[rs] + SignExt[imm6]} RegDst= Rd RegWr= busw npc_sel= 5 Rt imm6 Rs Rt 5 5 Rw Ra Rb RegFile 6 ExtOp= Extender busa busb instr fetch unit zero ALUSrc= Instruction<3:> <2:25> Rs Rt Rd Imm6 ALUctr= MemtoReg= = ALU Data In <6:2> <:5> MemWr= WrEn Adr <:5> Data CS6C L27 Single-Cycle CPU Control ()

12 The Single Cycle Datapath during Load op rs rt immediate R[rt] = Data {R[rs] + SignExt[imm6]} RegDst= Rd RegWr= busw npc_sel=+4 5 Rt imm6 Rs Rt 5 5 Rw Ra Rb RegFile 6 ExtOp=sign Extender busa busb instr fetch unit zero ALUSrc= Instruction<3:> <2:25> Rs Rt Rd Imm6 ALUctr=ADD MemtoReg= = ALU Data In <6:2> <:5> MemWr= WrEn Adr <:5> Data CS6C L27 Single-Cycle CPU Control (2)

13 The Single Cycle Datapath during Store? op rs rt immediate Data {R[rs] + SignExt[imm6]} = R[rt] RegDst= Rd RegWr= busw npc_sel= 5 Rt imm6 Rs Rt 5 5 Rw Ra Rb RegFile 6 ExtOp= Extender busa busb instr fetch unit zero ALUSrc= Instruction<3:> <2:25> Rs Rt Rd Imm6 ALUctr= MemtoReg= = ALU Data In <6:2> <:5> MemWr= WrEn Adr <:5> Data CS6C L27 Single-Cycle CPU Control (3)

14 The Single Cycle Datapath during Store op rs rt immediate Data {R[rs] + SignExt[imm6]} = R[rt] RegDst=x Rd RegWr= busw npc_sel=+4 5 Rt imm6 Rs Rt 5 5 Rw Ra Rb RegFile 6 ExtOp=sign Extender busa busb 6 instr fetch unit zero ALUSrc= Instruction<3:> <2:25> Rs Rt Rd Imm6 ALUctr=ADD MemtoReg=x = ALU Data In <6:2> <:5> MemWr= WrEn Adr <:5> Data CS6C L27 Single-Cycle CPU Control (4)

15 The Single Cycle Datapath during Branch? op rs rt immediate if (R[rs] - R[rt] == ) then Zero = ; else Zero = RegDst= Rd RegWr= busw npc_sel= 5 Rt imm6 Rs Rt 5 5 Rw Ra Rb RegFile 6 ExtOp= Extender busa busb 6 instr fetch unit zero ALUSrc= Instruction<3:> <2:25> Rs Rt Rd Imm6 ALUctr= MemtoReg= = ALU Data In <6:2> <:5> MemWr= WrEn Adr <:5> Data CS6C L27 Single-Cycle CPU Control (5)

16 The Single Cycle Datapath during Branch op rs rt immediate if (R[rs] - R[rt] == ) then Zero = ; else Zero = RegDst=x Rd RegWr= busw npc_sel=br 5 Rt imm6 Rs Rt 5 5 Rw Ra Rb RegFile 6 ExtOp=x Extender busa busb 6 instr fetch unit zero ALUSrc= Instruction<3:> <2:25> Rs Rt Rd Imm6 ALUctr=SUB MemtoReg=x = ALU Data In <6:2> <:5> MemWr= WrEn Adr <:5> Data CS6C L27 Single-Cycle CPU Control (6)

17 Instruction Fetch Unit at the End of Branch if (Zero == ) then PC = PC SignExt[imm6]*4 ; else PC = PC + 4 npc_sel Zero imm6 4 PC Ext 3 26 op rs rt immediate Adder Adder MUX npc_sel ctrl Mux CS6C L27 Single-Cycle CPU Control (7) 2 Inst PC Adr 6 Instruction<3:> What is encoding of npc_sel? Direct MUX select? Branch inst. / not branch Letʼs pick 2nd option npc_sel zero? MUX x Q: What logic gate?

18 Administrivia Sorry about Proj woes Grading is rough stuff. Donʼt blame Ben, heʼs innocent. HW6 Due imminently! Students have claimed it takes a very long time Remember MODULAR DESIGN. This could save you a lot of time. HW7 Out Now! Get started soon. Proj3 is on its way, will be out soon after the weekend. CS6C L27 Single-Cycle CPU Control (8)

19 Step 4: Given Datapath: RTL Control Instruction<3:> Inst Adr <26:3> Op <:5> Fun Rt <2:25> <:5> <:5> <6:2> Rs Rd Imm6 Control npc_sel RegWrRegDstExtOpALUSrcALUctr MemWr MemtoReg DATA PATH CS6C L27 Single-Cycle CPU Control (9)

20 inst A Summary of the Control Signals (/2) Register Transfer add R[rd] R[rs] + R[rt]; PC PC + 4 ALUsrc = RegB, ALUctr = ADD, RegDst = rd, RegWr, npc_sel = +4 sub R[rd] R[rs] R[rt]; PC PC + 4 ALUsrc = RegB, ALUctr = SUB, RegDst = rd, RegWr, npc_sel = +4 ori R[rt] R[rs] + zero_ext(imm6); PC PC + 4 ALUsrc = Im, Extop = Z,ALUctr = OR, RegDst = rt,regwr, npc_sel = +4 lw R[rt] MEM[ R[rs] + sign_ext(imm6)];pc PC + 4 ALUsrc = Im, Extop = sn, ALUctr = ADD, MemtoReg, RegDst = rt, RegWr, npc_sel = +4 sw MEM[ R[rs] + sign_ext(imm6)] R[rs];PC PC + 4 ALUsrc = Im, Extop = sn, ALUctr = ADD, MemWr, npc_sel = +4 beq if ( R[rs] == R[rt] ) then PC PC + sign_ext(imm6)] else PC PC + 4 npc_sel = br, ALUctr = SUB CS6C L27 Single-Cycle CPU Control (2)

21 A Summary of the Control Signals (2/2) See func We Don t Care :-) Appendix A op add sub ori lw sw beq jump RegDst ALUSrc MemtoReg RegWrite MemWrite npcsel Jump ExtOp ALUctr<2:> x Add x Subtract Or Add x x Add x x x Subtract x x x? x x R-type op rs rt rd shamt funct add, sub I-type op rs rt immediate ori, lw, sw, beq J-type op target address jump CS6C L27 Single-Cycle CPU Control (2)

22 Boolean Expressions for Controller RegDst = add + sub ALUSrc = ori + lw + sw MemtoReg = lw RegWrite = add + sub + ori + lw MemWrite = sw npcsel = beq Jump = jump ExtOp = lw + sw ALUctr[] = sub + beq (assume ALUctr is ADD, : SUB, : OR) ALUctr[] = or where, rtype = ~op 5 ~op 4 ~op 3 ~op 2 ~op ~op, ori = ~op 5 ~op 4 op 3 op 2 ~op op lw = op 5 ~op 4 ~op 3 ~op 2 op op sw = op 5 ~op 4 op 3 ~op 2 op op beq = ~op 5 ~op 4 ~op 3 op 2 ~op ~op jump = ~op 5 ~op 4 ~op 3 ~op 2 op ~op add = rtype func 5 ~func 4 ~func 3 ~func 2 ~func ~func sub = rtype func 5 ~func 4 ~func 3 ~func 2 func ~func How do we implement this in gates? CS6C L27 Single-Cycle CPU Control (22)

23 Controller Implementation opcode func AND logic add sub ori lw sw beq jump OR logic RegDst ALUSrc MemtoReg RegWrite MemWrite npcsel Jump ExtOp ALUctr[] ALUctr[] CS6C L27 Single-Cycle CPU Control (23)

24 Peer Instruction Instruction<3:> npc_sel Instruction Rd Rt Fetch Unit Clk RegDst Mux Rs Rt Rt Rs Rd Imm6 RegWr ALUctr Zero busa MemWr MemtoReg Rw Ra Rb busw -bit Registers busb Clk WrEn Adr Data In imm6 6 Data Clk ALUSrc Extender ExtOp A. MemToReg=ʻxʼ & ALUctr=ʻsubʼ. SUB or BEQ? B. ALUctr=ʻaddʼ. Which signal is different for all 3 of: ADD, LW, & SW? RegDst or ExtOp? C. Donʼt Care signals are useful because we can simplify our PLA personality matrix. F / T? Mux ALU <2:25> <6:2> <:5> <:5> Mux ABC : SRF : SRT 2: SEF 3: SET 4: BRF 5: BRT 6: BEF 7: BET CS6C L27 Single-Cycle CPU Control (24)

25 Summary: Single-cycle Processor 5 steps to design a processor. Analyze instruction set datapath requirements 2. Select set of datapath components & establish clock methodology 3. Assemble datapath meeting the requirements 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. 5. Assemble the control logic Formulate Logic Equations Design Circuits Processor Control Input Datapath Output CS6C L27 Single-Cycle CPU Control (25)

26 Bonus slides These are extra slides that used to be included in lecture notes, but have been moved to this, the bonus area to serve as a supplement. The slides will appear in the order they would have in the normal presentation CS6C L27 Single-Cycle CPU Control (26)

27 J-type The Single Cycle Datapath during Jump 3 op Jump= Instruction<3:> npc_sel= Instruction Rd Rt Fetch Unit RegDst = Clk Mux RegWr = Rs Rt ALUctr = Rt Rs Rd Imm6 TA MemtoReg = busa Zero MemWr = Rw Ra Rb busw -bit Registers busb Clk WrEnAdr imm Extender target address New PC = { PC[3..28], target address, } Mux ALUSrc = ALU Data In Clk <2:25> <6:2> Data <:5> jump <:5> Mux <:25> ExtOp = CS6C L27 Single-Cycle CPU Control (27)

28 The Single Cycle Datapath during Jump J-type 3 op Jump= Instruction<3:> npc_sel=? Instruction Rd Rt Fetch Unit RegDst = x Clk Mux RegWr = Rs Rt ALUctr =x Rt Rs Rd Imm6 TA MemtoReg = x busa Zero MemWr = Rw Ra Rb busw -bit Registers busb Clk WrEnAdr imm Extender target address New PC = { PC[3..28], target address, } Mux ALUSrc = x ALU Data In Clk <2:25> <6:2> Data <:5> jump <:5> Mux <:25> ExtOp = x CS6C L27 Single-Cycle CPU Control (28)

29 Instruction Fetch Unit at the End of Jump J-type New PC = { PC[3..28], target address, } Jump npc_sel Zero 3 op Inst Adr target address Instruction<3:> jump npc_mux_sel 4 imm6 Adder Adder Mux PC Clk How do we modify this to account for jumps? CS6C L27 Single-Cycle CPU Control (29)

30 Instruction Fetch Unit at the End of Jump J-type New PC = { PC[3..28], target address, } Jump npc_sel Zero 3 op target address Inst Adr jump Instruction<3:> 4 npc_mux_sel TA 26 Query Can Zero still get asserted? imm6 Adder Adder Mux 4 (MSBs) Mux PC Clk Does npc_sel need to be? If not, what? CS6C L27 Single-Cycle CPU Control (3)

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs6c UC Berkeley CS6C : Machine Structures The Internet is broken?! The Clean Slate team at Stanford wants to revamp the Internet, making it safer (from viruses), more reliable

More information

add rd, rs, rt Review: A Single Cycle Datapath We have everything Lecture Recap: Meaning of the Control Signals

add rd, rs, rt Review: A Single Cycle Datapath We have everything Lecture Recap: Meaning of the Control Signals CS6C L27 Single-Cycle CPU Control () inst.eecs.berkeley.edu/~cs6c UC Berkeley CS6C : Machine Structures Lecture 26 Single-cycle CPU Control 27-3-2 Ehausted TA Ben Sussman www.icanhascheezburger.com Qutrits

More information

CS3350B Computer Architecture Winter Lecture 5.7: Single-Cycle CPU: Datapath Control (Part 2)

CS3350B Computer Architecture Winter Lecture 5.7: Single-Cycle CPU: Datapath Control (Part 2) CS335B Computer Architecture Winter 25 Lecture 5.7: Single-Cycle CPU: Datapath Control (Part 2) Marc Moreno Maza www.csd.uwo.ca/courses/cs335b [Adapted from lectures on Computer Organization and Design,

More information

CS 110 Computer Architecture Single-Cycle CPU Datapath & Control

CS 110 Computer Architecture Single-Cycle CPU Datapath & Control CS Computer Architecture Single-Cycle CPU Datapath & Control Instructor: Sören Schwertfeger http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University Slides

More information

Lecture #17: CPU Design II Control

Lecture #17: CPU Design II Control Lecture #7: CPU Design II Control 25-7-9 Anatomy: 5 components of any Computer Personal Computer Computer Processor Control ( brain ) This week ( ) path ( brawn ) (where programs, data live when running)

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single- Cycle CPU Datapath & Control Part 2

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single- Cycle CPU Datapath & Control Part 2 CS 6C: Great Ideas in Computer Architecture (Machine Structures) Single- Cycle CPU Datapath & Control Part 2 Instructors: Krste Asanovic & Vladimir Stojanovic hfp://inst.eecs.berkeley.edu/~cs6c/ Review:

More information

COMP303 Computer Architecture Lecture 9. Single Cycle Control

COMP303 Computer Architecture Lecture 9. Single Cycle Control COMP33 Computer Architecture Lecture 9 Single Cycle Control A Single Cycle Datapath We have everything except control signals (underlined) RegDst busw Today s lecture will look at how to generate the control

More information

COMP303 - Computer Architecture Lecture 8. Designing a Single Cycle Datapath

COMP303 - Computer Architecture Lecture 8. Designing a Single Cycle Datapath COMP33 - Computer Architecture Lecture 8 Designing a Single Cycle Datapath The Big Picture The Five Classic Components of a Computer Processor Input Control Memory Datapath Output The Big Picture: The

More information

361 control.1. EECS 361 Computer Architecture Lecture 9: Designing Single Cycle Control

361 control.1. EECS 361 Computer Architecture Lecture 9: Designing Single Cycle Control 36 control. EECS 36 Computer Architecture Lecture 9: Designing Single Cycle Control Recap: The MIPS Subset ADD and subtract add rd, rs, rt sub rd, rs, rt OR Imm: ori rt, rs, imm6 3 3 26 2 6 op rs rt rd

More information

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 19 CPU Design: The Single-Cycle II & Control !

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 19 CPU Design: The Single-Cycle II & Control ! inst.eecs.berkeley.edu/~cs6c CS6C : Machine Structures Lecture 9 CPU Design: The Single-Cycle II & Control 2-7-22!!!Instructor Paul Pearce! Dell may have shipped infected motherboards! Dell is warning

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 34 Single Cycle CPU Control I 24-4-16 Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia 1.5 Quake?! NBC movie on May 3 rd. Truth stranger

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #19 Designing a Single-Cycle CPU 27-7-26 Scott Beamer Instructor AI Focuses on Poker CS61C L19 CPU Design : Designing a Single-Cycle CPU

More information

CS 61C: Great Ideas in Computer Architecture Control and Pipelining

CS 61C: Great Ideas in Computer Architecture Control and Pipelining CS 6C: Great Ideas in Computer Architecture Control and Pipelining Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs6c/sp6 Datapath Control Signals ExtOp: zero, sign

More information

EEM 486: Computer Architecture. Lecture 3. Designing Single Cycle Control

EEM 486: Computer Architecture. Lecture 3. Designing Single Cycle Control EEM 48: Computer Architecture Lecture 3 Designing Single Cycle The Big Picture: Where are We Now? Processor Input path Output Lec 3.2 An Abstract View of the Implementation Ideal Address Net Address PC

More information

MIPS-Lite Single-Cycle Control

MIPS-Lite Single-Cycle Control MIPS-Lite Single-Cycle Control COE68: Computer Organization and Architecture Dr. Gul N. Khan http://www.ee.ryerson.ca/~gnkhan Electrical and Computer Engineering Ryerson University Overview Single cycle

More information

361 datapath.1. Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath

361 datapath.1. Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath 361 datapath.1 Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath Outline of Today s Lecture Introduction Where are we with respect to the BIG picture? Questions and Administrative

More information

The Big Picture: Where are We Now? EEM 486: Computer Architecture. Lecture 3. Designing a Single Cycle Datapath

The Big Picture: Where are We Now? EEM 486: Computer Architecture. Lecture 3. Designing a Single Cycle Datapath The Big Picture: Where are We Now? EEM 486: Computer Architecture Lecture 3 The Five Classic Components of a Computer Processor Input Control Memory Designing a Single Cycle path path Output Today s Topic:

More information

Working on the Pipeline

Working on the Pipeline Computer Science 6C Spring 27 Working on the Pipeline Datapath Control Signals Computer Science 6C Spring 27 MemWr: write memory MemtoReg: ALU; Mem RegDst: rt ; rd RegWr: write register 4 PC Ext Imm6 Adder

More information

CS 61C: Great Ideas in Computer Architecture. MIPS CPU Datapath, Control Introduction

CS 61C: Great Ideas in Computer Architecture. MIPS CPU Datapath, Control Introduction CS 61C: Great Ideas in Computer Architecture MIPS CPU Datapath, Control Introduction Instructor: Alan Christopher 7/28/214 Summer 214 -- Lecture #2 1 Review of Last Lecture Critical path constrains clock

More information

CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath

CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath CPE 442 single-cycle datapath.1 Outline of Today s Lecture Recap and Introduction Where are we with respect to the BIG picture?

More information

CS 61C: Great Ideas in Computer Architecture Lecture 12: Single- Cycle CPU, Datapath & Control Part 2

CS 61C: Great Ideas in Computer Architecture Lecture 12: Single- Cycle CPU, Datapath & Control Part 2 CS 6C: Great Ideas in Computer Architecture Lecture 2: Single- Cycle CPU, Datapath & Control Part 2 Instructor: Sagar Karandikar sagark@eecs.berkeley.edu hbp://inst.eecs.berkeley.edu/~cs6c Midterm Results

More information

Single Cycle CPU Design. Mehran Rezaei

Single Cycle CPU Design. Mehran Rezaei Single Cycle CPU Design Mehran Rezaei What does it mean? Instruction Fetch Instruction Memory clk pc 32 32 address add $t,$t,$t2 instruction Next Logic to generate the address of next instruction The Branch

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #17 Single Cycle CPU Datapath CPS today! 2005-10-31 There is one handout today at the front and back of the room! Lecturer PSOE, new dad

More information

ECE468 Computer Organization and Architecture. Designing a Single Cycle Datapath

ECE468 Computer Organization and Architecture. Designing a Single Cycle Datapath ECE468 Computer Organization and Architecture Designing a Single Cycle Datapath ECE468 datapath1 The Big Picture: Where are We Now? The Five Classic Components of a Computer Processor Control Input Datapath

More information

CS359: Computer Architecture. The Processor (A) Yanyan Shen Department of Computer Science and Engineering

CS359: Computer Architecture. The Processor (A) Yanyan Shen Department of Computer Science and Engineering CS359: Computer Architecture The Processor (A) Yanyan Shen Department of Computer Science and Engineering Eecuting R-type Instructions 7 Instructions ADD and subtract add rd, rs, rt sub rd, rs, rt OR Immediate:

More information

CS 61C: Great Ideas in Computer Architecture Datapath. Instructors: John Wawrzynek & Vladimir Stojanovic

CS 61C: Great Ideas in Computer Architecture Datapath. Instructors: John Wawrzynek & Vladimir Stojanovic CS 61C: Great Ideas in Computer Architecture Datapath Instructors: John Wawrzynek & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/fa15 1 Components of a Computer Processor Control Enable? Read/Write

More information

Instructor: Randy H. Katz hcp://inst.eecs.berkeley.edu/~cs61c/fa13. Fall Lecture #18. Warehouse Scale Computer

Instructor: Randy H. Katz hcp://inst.eecs.berkeley.edu/~cs61c/fa13. Fall Lecture #18. Warehouse Scale Computer /29/3 CS 6C: Great Ideas in Computer Architecture Building Blocks for Datapaths Instructor: Randy H. Katz hcp://inst.eecs.berkeley.edu/~cs6c/fa3 /27/3 Fall 23 - - Lecture #8 So5ware Parallel Requests Assigned

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 28: Single- Cycle CPU Datapath Control Part 1

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 28: Single- Cycle CPU Datapath Control Part 1 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 28: Single- Cycle CPU Datapath Control Part 1 Guest Lecturer: Sagar Karandikar hfp://inst.eecs.berkeley.edu/~cs61c/ http://research.microsoft.com/apps/pubs/default.aspx?id=212001!

More information

CPU Organization (Design)

CPU Organization (Design) ISA Requirements CPU Organization (Design) Datapath Design: Capabilities & performance characteristics of principal Functional Units (FUs) needed by ISA instructions (e.g., Registers, ALU, Shifters, Logic

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 25 CPU Design: Designing a Single-cycle CPU Lecturer SOE Dan Garcia www.cs.berkeley.edu/~ddgarcia T-Mobile s Wi-Fi / Cell phone

More information

ECE170 Computer Architecture. Single Cycle Control. Review: 3b: Add & Subtract. Review: 3e: Store Operations. Review: 3d: Load Operations

ECE170 Computer Architecture. Single Cycle Control. Review: 3b: Add & Subtract. Review: 3e: Store Operations. Review: 3d: Load Operations ECE7 Computer Architecture Single Cycle Control Review: 3a: Overview of the Fetch Unit The common operations Fetch the : mem[] Update the program counter: Sequential Code: < + Branch and Jump: < something

More information

How to design a controller to produce signals to control the datapath

How to design a controller to produce signals to control the datapath ECE48 Computer Organization and Architecture Designing Single Cycle How to design a controller to produce signals to control the datapath ECE48. 2--7 Recap: The MIPS Formats All MIPS instructions are bits

More information

CPU Design Steps. EECC550 - Shaaban

CPU Design Steps. EECC550 - Shaaban CPU Design Steps 1. Analyze instruction set operations using independent RTN => datapath requirements. 2. Select set of datapath components & establish clock methodology. 3. Assemble datapath meeting the

More information

The Processor: Datapath & Control

The Processor: Datapath & Control Orange Coast College Business Division Computer Science Department CS 116- Computer Architecture The Processor: Datapath & Control Processor Design Step 3 Assemble Datapath Meeting Requirements Build the

More information

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI CSCI 42: Computer Architectures The Processor (2) Fengguang Song Department of Computer & Information Science IUPUI Full Datapath Branch Target Instruction Fetch Immediate 4 Today s Contents We have looked

More information

Outline. EEL-4713 Computer Architecture Designing a Single Cycle Datapath

Outline. EEL-4713 Computer Architecture Designing a Single Cycle Datapath Outline EEL-473 Computer Architecture Designing a Single Cycle path Introduction The steps of designing a processor path and timing for register-register operations path for logical operations with immediates

More information

Recap: The MIPS Subset ADD and subtract EEL Computer Architecture shamt funct add rd, rs, rt Single-Cycle Control Logic sub rd, rs, rt

Recap: The MIPS Subset ADD and subtract EEL Computer Architecture shamt funct add rd, rs, rt Single-Cycle Control Logic sub rd, rs, rt Recap: The MIPS Subset EEL-47 - Computer Architecture Single-Cycle Logic ADD and subtract add rd, rs, rt sub rd, rs, rt OR Imm: ori rt, rs, imm 2 rs rt rd shamt t bits 5 bits 5 bits 5 bits 5 bits bits

More information

CSCI 402: Computer Architectures. Fengguang Song Department of Computer & Information Science IUPUI. Today s Content

CSCI 402: Computer Architectures. Fengguang Song Department of Computer & Information Science IUPUI. Today s Content 3/6/8 CSCI 42: Computer Architectures The Processor (2) Fengguang Song Department of Computer & Information Science IUPUI Today s Content We have looked at how to design a Data Path. 4.4, 4.5 We will design

More information

Review. N-bit adder-subtractor done using N 1- bit adders with XOR gates on input. Lecture #19 Designing a Single-Cycle CPU

Review. N-bit adder-subtractor done using N 1- bit adders with XOR gates on input. Lecture #19 Designing a Single-Cycle CPU CS6C L9 CPU Design : Designing a Single-Cycle CPU () insteecsberkeleyedu/~cs6c CS6C : Machine Structures Lecture #9 Designing a Single-Cycle CPU 27-7-26 Scott Beamer Instructor AI Focuses on Poker Review

More information

Midterm I March 3, 1999 CS152 Computer Architecture and Engineering

Midterm I March 3, 1999 CS152 Computer Architecture and Engineering University of California, Berkeley College of Engineering Computer Science Division EECS Spring 1999 John Kubiatowicz Midterm I March 3, 1999 CS152 Computer Architecture and Engineering Your Name: SID

More information

Designing a Multicycle Processor

Designing a Multicycle Processor Designing a Multicycle Processor Arquitectura de Computadoras Arturo Díaz D PérezP Centro de Investigación n y de Estudios Avanzados del IPN adiaz@cinvestav.mx Arquitectura de Computadoras Multicycle-

More information

Major CPU Design Steps

Major CPU Design Steps Datapath Major CPU Design Steps. Analyze instruction set operations using independent RTN ISA => RTN => datapath requirements. This provides the the required datapath components and how they are connected

More information

Lecture 6 Datapath and Controller

Lecture 6 Datapath and Controller Lecture 6 Datapath and Controller Peng Liu liupeng@zju.edu.cn Windows Editor and Word Processing UltraEdit, EditPlus Gvim Linux or Mac IOS Emacs vi or vim Word Processing(Windows, Linux, and Mac IOS) LaTex

More information

University of California College of Engineering Computer Science Division -EECS. CS 152 Midterm I

University of California College of Engineering Computer Science Division -EECS. CS 152 Midterm I Name: University of California College of Engineering Computer Science Division -EECS Fall 996 D.E. Culler CS 52 Midterm I Your Name: ID Number: Discussion Section: You may bring one double-sided pages

More information

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 CPU Design: The Single-Cycle I ! Nasty new windows vulnerability!

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 CPU Design: The Single-Cycle I ! Nasty new windows vulnerability! inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 CPU Design: The Single-Cycle I CS61C L18 CPU Design: The Single-Cycle I (1)! 2010-07-21!!!Instructor Paul Pearce! Nasty new windows vulnerability!

More information

CS152 Computer Architecture and Engineering Lecture 10: Designing a Single Cycle Control. Recap: The MIPS Instruction Formats

CS152 Computer Architecture and Engineering Lecture 10: Designing a Single Cycle Control. Recap: The MIPS Instruction Formats CS52 Computer Architecture and Engineering Lecture : Designing a Single Cycle February 7, 995 Dave Patterson (patterson@cs) and Shing Kong (shing.kong@eng.sun.com) Slides available on http://http.cs.berkeley.edu/~patterson

More information

CS61C : Machine Structures

CS61C : Machine Structures CS 61C L path (1) insteecsberkeleyedu/~cs61c/su6 CS61C : Machine Structures Lecture # path natomy: 5 components of any Computer Personal Computer -7-25 This week Computer Processor ( brain ) path ( brawn

More information

CS3350B Computer Architecture Quiz 3 March 15, 2018

CS3350B Computer Architecture Quiz 3 March 15, 2018 CS3350B Computer Architecture Quiz 3 March 15, 2018 Student ID number: Student Last Name: Question 1.1 1.2 1.3 2.1 2.2 2.3 Total Marks The quiz consists of two exercises. The expected duration is 30 minutes.

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single- Cycle CPU Datapath Control Part 1

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single- Cycle CPU Datapath Control Part 1 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single- Cycle CPU Datapath Control Part 1 Instructors: Krste Asanovic & Vladimir Stojanovic hfp://inst.eecs.berkeley.edu/~cs61c/ Review

More information

361 multipath..1. EECS 361 Computer Architecture Lecture 10: Designing a Multiple Cycle Processor

361 multipath..1. EECS 361 Computer Architecture Lecture 10: Designing a Multiple Cycle Processor 36 multipath.. EECS 36 Computer Architecture Lecture : Designing a Multiple Cycle Processor Recap: A Single Cycle Datapath We have everything except control signals (underline) Today s lecture will show

More information

CS 152 Computer Architecture and Engineering. Lecture 10: Designing a Multicycle Processor

CS 152 Computer Architecture and Engineering. Lecture 10: Designing a Multicycle Processor CS 152 Computer Architecture and Engineering Lecture 1: Designing a Multicycle Processor October 1, 1997 Dave Patterson (http.cs.berkeley.edu/~patterson) lecture slides: http://www-inst.eecs.berkeley.edu/~cs152/

More information

CSE 141 Computer Architecture Summer Session Lecture 3 ALU Part 2 Single Cycle CPU Part 1. Pramod V. Argade

CSE 141 Computer Architecture Summer Session Lecture 3 ALU Part 2 Single Cycle CPU Part 1. Pramod V. Argade CSE 141 Computer Architecture Summer Session 1 2004 Lecture 3 ALU Part 2 Single Cycle CPU Part 1 Pramod V. Argade Reading Assignment Announcements Chapter 5: The Processor: Datapath and Control, Sec. 5.3-5.4

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single- Cycle CPU Datapath & Control Part 2. Clk

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single- Cycle CPU Datapath & Control Part 2. Clk 3/3/5 CS 6C: Great Ideas in Computer Architecture (Machine Structures) Single- Cycle CPU path & Control Part 2 ructors: Krste Asanovic & Vladimir Stojanovic hip://inst.eecs.berkeley.edu/~cs6c/ Review:

More information

Chapter 4. The Processor. Computer Architecture and IC Design Lab

Chapter 4. The Processor. Computer Architecture and IC Design Lab Chapter 4 The Processor Introduction CPU performance factors CPI Clock Cycle Time Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS

More information

CpE 442. Designing a Multiple Cycle Controller

CpE 442. Designing a Multiple Cycle Controller CpE 442 Designing a Multiple Cycle Controller CPE 442 multicontroller.. Outline of Today s Lecture Recap (5 minutes) Review of FSM control (5 minutes) From Finite State Diagrams to Microprogramming (25

More information

ECE 361 Computer Architecture Lecture 11: Designing a Multiple Cycle Controller. Review of a Multiple Cycle Implementation

ECE 361 Computer Architecture Lecture 11: Designing a Multiple Cycle Controller. Review of a Multiple Cycle Implementation ECE 6 Computer Architecture Lecture : Designing a Multiple Cycle ler 6 multicontroller. Review of a Multiple Cycle Implementation The root of the single cycle processor s problems: The cycle time has to

More information

Ch 5: Designing a Single Cycle Datapath

Ch 5: Designing a Single Cycle Datapath Ch 5: esigning a Single Cycle path Computer Systems Architecture CS 365 The Big Picture: Where are We Now? The Five Classic Components of a Computer Processor Control Memory path Input Output Today s Topic:

More information

ECE468 Computer Organization and Architecture. Designing a Multiple Cycle Controller

ECE468 Computer Organization and Architecture. Designing a Multiple Cycle Controller ECE468 Computer Organization and Architecture Designing a Multiple Cycle Controller ECE468 multicontroller Review of a Multiple Cycle Implementation The root of the single cycle processor s problems: The

More information

ECE 361 Computer Architecture Lecture 10: Designing a Multiple Cycle Processor

ECE 361 Computer Architecture Lecture 10: Designing a Multiple Cycle Processor ECE 6 Computer Architecture Lecture : Designing a Multiple Cycle Processor 6 multipath.. Recap: A Single Cycle Datapath We have everything except control signals (underline) RegDst Today s lecture will

More information

The MIPS Processor Datapath

The MIPS Processor Datapath The MIPS Processor Datapath Module Outline MIPS datapath implementation Register File, Instruction memory, Data memory Instruction interpretation and execution. Combinational control Assignment: Datapath

More information

Lecture 12: Single-Cycle Control Unit. Spring 2018 Jason Tang

Lecture 12: Single-Cycle Control Unit. Spring 2018 Jason Tang Lecture 12: Single-Cycle Control Unit Spring 2018 Jason Tang 1 Topics Control unit design Single cycle processor Control unit circuit implementation 2 Computer Organization Computer Processor Memory Devices

More information

Recap: A Single Cycle Datapath. CS 152 Computer Architecture and Engineering Lecture 8. Single-Cycle (Con t) Designing a Multicycle Processor

Recap: A Single Cycle Datapath. CS 152 Computer Architecture and Engineering Lecture 8. Single-Cycle (Con t) Designing a Multicycle Processor CS 52 Computer Architecture and Engineering Lecture 8 Single-Cycle (Con t) Designing a Multicycle Processor February 23, 24 John Kubiatowicz (www.cs.berkeley.edu/~kubitron) lecture slides: http://inst.eecs.berkeley.edu/~cs52/

More information

CS 110 Computer Architecture Review Midterm II

CS 110 Computer Architecture Review Midterm II CS 11 Computer Architecture Review Midterm II http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University Slides based on UC Berkley's CS61C 1 Midterm II Date:

More information

Guerrilla Session 3: MIPS CPU

Guerrilla Session 3: MIPS CPU CS61C Summer 2015 Guerrilla Session 3: MIPS CPU Problem 1: swai (Sp04 Final): We want to implement a new I- type instruction swai (store word then auto- increment). The operation performs the regular sw

More information

Midterm I March 12, 2003 CS152 Computer Architecture and Engineering

Midterm I March 12, 2003 CS152 Computer Architecture and Engineering University of California, Berkeley College of Engineering Computer Science Division EECS Spring 2003 John Kubiatowicz Midterm I March 2, 2003 CS52 Computer Architecture and Engineering Your Name: SID Number:

More information

CPSC614: Computer Architecture

CPSC614: Computer Architecture CPSC614: Computer Architecture E.J. Kim Texas A&M University Computer Science & Engineering Department Assignment 1, Due Thursday Feb/9 Spring 2017 1. A certain benchmark contains 195,700 floating-point

More information

Midterm I October 6, 1999 CS152 Computer Architecture and Engineering

Midterm I October 6, 1999 CS152 Computer Architecture and Engineering University of California, Berkeley College of Engineering Computer Science Division EECS Fall 1999 John Kubiatowicz Midterm I October 6, 1999 CS152 Computer Architecture and Engineering Your Name: SID

More information

EECS150 - Digital Design Lecture 10- CPU Microarchitecture. Processor Microarchitecture Introduction

EECS150 - Digital Design Lecture 10- CPU Microarchitecture. Processor Microarchitecture Introduction EECS150 - Digital Design Lecture 10- CPU Microarchitecture Feb 18, 2010 John Wawrzynek Spring 2010 EECS150 - Lec10-cpu Page 1 Processor Microarchitecture Introduction Microarchitecture: how to implement

More information

ECE468. Computer Organization and Architecture. Designing a Multiple Cycle Processor

ECE468. Computer Organization and Architecture. Designing a Multiple Cycle Processor ECE68 Computer Organization and Architecture Designing a Multiple Cycle Processor ECE68 multipath.. op 6 Instr RegDst A Single Cycle Processor busw RegWr Main imm6 Instr Rb -bit Registers 6 op RegDst

More information

ECE4680 Computer Organization and Architecture. Designing a Pipeline Processor

ECE4680 Computer Organization and Architecture. Designing a Pipeline Processor ECE468 Computer Organization and Architecture Designing a Pipeline Processor Pipelined processors overlap instructions in time on common execution resources. ECE468 Pipeline. 22-4-3 Start X:4 Branch Jump

More information

CS61c Final Review Fall Andy Carle 12/12/2004

CS61c Final Review Fall Andy Carle 12/12/2004 CS61c Final Review Fall 24 Andy Carle 12/12/24 Topics Before Midterm C& Malloc Memory Management MIPS Number Representation Floating Point CAL Topics Since Midterm Digital Logic Verilog State Machines

More information

If you didn t do as well as you d hoped

If you didn t do as well as you d hoped 7/3/5 CS 6C: Great Ideas in Computer Architecture Midterm Results Lecture 2: Single- Cycle CPU, path & Control Part 2 ructor: Sagar Karandikar sagark@eecsberkeleyedu hfp://insteecsberkeleyedu/~cs6c You

More information

Adding Support for jal to Single Cycle Datapath (For More Practice Exercise 5.20)

Adding Support for jal to Single Cycle Datapath (For More Practice Exercise 5.20) Adding Support for jal to Single Cycle Datapath (For More Practice Exercise 5.20) The MIPS jump and link instruction, jal is used to support procedure calls by jumping to jump address (similar to j ) and

More information

CENG 3420 Lecture 06: Datapath

CENG 3420 Lecture 06: Datapath CENG 342 Lecture 6: Datapath Bei Yu byu@cse.cuhk.edu.hk CENG342 L6. Spring 27 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified to contain only: memory-reference

More information

Processor (I) - datapath & control. Hwansoo Han

Processor (I) - datapath & control. Hwansoo Han Processor (I) - datapath & control Hwansoo Han Introduction CPU performance factors Instruction count - Determined by ISA and compiler CPI and Cycle time - Determined by CPU hardware We will examine two

More information

CS152 Computer Architecture and Engineering. Lecture 8 Multicycle Design and Microcode John Lazzaro (www.cs.berkeley.

CS152 Computer Architecture and Engineering. Lecture 8 Multicycle Design and Microcode John Lazzaro (www.cs.berkeley. CS152 Computer Architecture and Engineering Lecture 8 Multicycle Design and Microcode 2004-09-23 John Lazzaro (www.cs.berkeley.edu/~lazzaro) Dave Patterson (www.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs152/

More information

ECE4680. Computer Organization and Architecture. Designing a Multiple Cycle Processor

ECE4680. Computer Organization and Architecture. Designing a Multiple Cycle Processor ECE68 Computer Organization and Architecture Designing a Multiple Cycle Processor ECE68 Multipath. -- op 6 Instr RegDst A Single Cycle Processor busw RegWr Main imm6 Instr Rb -bit Registers 6 op

More information

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu CENG 342 Computer Organization and Design Lecture 6: MIPS Processor - I Bei Yu CEG342 L6. Spring 26 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified

More information

COMP303 - Computer Architecture Lecture 10. Multi-Cycle Design & Exceptions

COMP303 - Computer Architecture Lecture 10. Multi-Cycle Design & Exceptions COP33 - Computer Architecture Lecture ulti-cycle Design & Exceptions Single Cycle Datapath We designed a processor that requires one cycle per instruction RegDst busw 32 Clk RegWr Rd ux imm6 Rt 5 5 Rs

More information

Laboratory 5 Processor Datapath

Laboratory 5 Processor Datapath Laboratory 5 Processor Datapath Description of HW Instruction Set Architecture 16 bit data bus 8 bit address bus Starting address of every program = 0 (PC initialized to 0 by a reset to begin execution)

More information

EECS150 - Digital Design Lecture 9- CPU Microarchitecture. Watson: Jeopardy-playing Computer

EECS150 - Digital Design Lecture 9- CPU Microarchitecture. Watson: Jeopardy-playing Computer EECS150 - Digital Design Lecture 9- CPU Microarchitecture Feb 15, 2011 John Wawrzynek Spring 2011 EECS150 - Lec09-cpu Page 1 Watson: Jeopardy-playing Computer Watson is made up of a cluster of ninety IBM

More information

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control ELEC 52/62 Computer Architecture and Design Spring 217 Lecture 4: Datapath and Control Ujjwal Guin, Assistant Professor Department of Electrical and Computer Engineering Auburn University, Auburn, AL 36849

More information

ECE4680. Computer Organization and Architecture. Designing a Multiple Cycle Processor

ECE4680. Computer Organization and Architecture. Designing a Multiple Cycle Processor ECE468 Computer Organization and Architecture Designing a Multiple Cycle Processor ECE468 Multipath. -- Start X:4 op 6 Instr RegDst A Single Cycle Processor busw RegWr Clk Main imm6 Instr Rb -bit

More information

COMPUTER ORGANIZATION AND DESIGN. The Hardware/Software Interface. Chapter 4. The Processor: A Based on P&H

COMPUTER ORGANIZATION AND DESIGN. The Hardware/Software Interface. Chapter 4. The Processor: A Based on P&H COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface Chapter 4 The Processor: A Based on P&H Introduction We will examine two MIPS implementations A simplified version A more realistic pipelined

More information

Pipeline design. Mehran Rezaei

Pipeline design. Mehran Rezaei Pipeline design Mehran Rezaei How Can We Improve the Performance? Exec Time = IC * CPI * CCT Optimization IC CPI CCT Source Level * Compiler * * ISA * * Organization * * Technology * With Pipelining We

More information

Midterm I March 1, 2001 CS152 Computer Architecture and Engineering

Midterm I March 1, 2001 CS152 Computer Architecture and Engineering University of California, Berkeley College of Engineering Computer Science Division EECS Spring 200 John Kubiatowicz Midterm I March, 200 CS52 Computer Architecture and Engineering Your Name: SID Number:

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single Cycle MIPS CPU

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single Cycle MIPS CPU CS 6C: Great Ideas in Computer Architecture (Machine Structures) Single Cycle MIPS CPU ructors: Randy H Katz David A PaGerson hgp://insteecsberkeleyedu/~cs6c/sp Spring 2 - - Lecture #8 Parallel Requests

More information

Lecture 7 Pipelining. Peng Liu.

Lecture 7 Pipelining. Peng Liu. Lecture 7 Pipelining Peng Liu liupeng@zju.edu.cn 1 Review: The Single Cycle Processor 2 Review: Given Datapath,RTL -> Control Instruction Inst Memory Adr Op Fun Rt

More information

Initial Representation Finite State Diagram Microprogram. Sequencing Control Explicit Next State Microprogram counter

Initial Representation Finite State Diagram Microprogram. Sequencing Control Explicit Next State Microprogram counter Control Implementation Alternatives Control may be designed using one of several initial representations. The choice of sequence control, and how logic is represented, can then be determined independently;

More information

CPE 335 Computer Organization. Basic MIPS Architecture Part I

CPE 335 Computer Organization. Basic MIPS Architecture Part I CPE 335 Computer Organization Basic MIPS Architecture Part I Dr. Iyad Jafar Adapted from Dr. Gheith Abandah slides http://www.abandah.com/gheith/courses/cpe335_s8/index.html CPE232 Basic MIPS Architecture

More information

EECS 151/251A Fall 2017 Digital Design and Integrated Circuits. Instructor: John Wawrzynek and Nicholas Weaver. Lecture 13 EE141

EECS 151/251A Fall 2017 Digital Design and Integrated Circuits. Instructor: John Wawrzynek and Nicholas Weaver. Lecture 13 EE141 EECS 151/251A Fall 2017 Digital Design and Integrated Circuits Instructor: John Wawrzynek and Nicholas Weaver Lecture 13 Project Introduction You will design and optimize a RISC-V processor Phase 1: Design

More information

LECTURE 5. Single-Cycle Datapath and Control

LECTURE 5. Single-Cycle Datapath and Control LECTURE 5 Single-Cycle Datapath and Control PROCESSORS In lecture 1, we reminded ourselves that the datapath and control are the two components that come together to be collectively known as the processor.

More information

CSE 141 Computer Architecture Summer Session I, Lecture 3 Performance and Single Cycle CPU Part 1. Pramod V. Argade

CSE 141 Computer Architecture Summer Session I, Lecture 3 Performance and Single Cycle CPU Part 1. Pramod V. Argade CSE 141 Computer Architecture Summer Session I, 2005 Lecture 3 Performance and Single Cycle CPU Part 1 Pramod V. Argade CSE141: Introduction to Computer Architecture Instructor: Pramod V. Argade (p2argade@cs.ucsd.edu)

More information

Systems Architecture

Systems Architecture Systems Architecture Lecture 15: A Simple Implementation of MIPS Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan Some or all figures from Computer Organization and Design: The Hardware/Software

More information

CS 61C Summer 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control)

CS 61C Summer 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control) CS 61C Summer 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control) 1) If this exam were a CPU, you d be halfway through the pipeline (Sp15 Final) We found that the instruction fetch and memory stages

More information

CN Project : Verilog implementation of MIPS processor

CN Project : Verilog implementation of MIPS processor University Politehnica Bucharest Computers Faculty CN Project : Verilog implementation of MIPS processor Coordinator :Decebal Popescu, Teaching Assistant, Ph.D 1 Students : Cocorada Sorin Comanescu George

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor? Chapter 4 The Processor 2 Introduction We will learn How the ISA determines many aspects

More information

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture The Processor Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut CSE3666: Introduction to Computer Architecture Introduction CPU performance factors Instruction count

More information

CPU Organization Datapath Design:

CPU Organization Datapath Design: CPU Organization Datapath Design: Capabilities & performance characteristics of principal Functional Units (FUs): (e.g., Registers, ALU, Shifters, Logic Units,...) Ways in which these components are interconnected

More information

Midterm I March 12, 2003 CS152 Computer Architecture and Engineering

Midterm I March 12, 2003 CS152 Computer Architecture and Engineering University of California, Berkeley College of Engineering Computer Science Division EECS Spring 23 John Kubiatowicz Midterm I March 2, 23 CS2 Computer Architecture and Engineering Your Name: SID Number:

More information