# DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 3 DLD P VIDYA SAGAR

Size: px
Start display at page:

Download "DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 3 DLD P VIDYA SAGAR"

Transcription

1 DLD UNIT III Combinational Circuits (CC), Analysis procedure, Design Procedure, Combinational circuit for different code converters and other problems, Binary Adder- Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers, Demultiplexer. VIDYA SAGAR P

2 Logic circuits may be combinational or sequential. Combinational circuits: consist of logic gates whose outputs at any time are determined from only the present combination of inputs. Combinational circuits have their operation specified logically by a set of Boolean functions. Sequential circuits: contain storage elements in addition to logic gates and have their outputs being a function of the inputs and the state of the storage elements which is a function of previous inputs. Sequential circuits have their outputs depending not only on present values of inputs, but also on past inputs, and the circuit behavior must be specified by a time sequence of inputs and internal states. A combinational circuit consists of an interconnection of logic gates. Combinational circuits react to the values at their inputs and produce the value of the output signal, transforming binary information from the given input data to a required output data. A block diagram of a combinational circuit is shown below. The n inputs come from an external source; the m outputs are produced by the combinational circuit and go to an external destination. Each input and output is actually an analog electrical signal whose values are interpreted to be a binary signal that represents logic 1 and logic 0. ANALYSIS PROCEDURE: The analysis of a combinational circuit requires that we determine the function that the circuit implements. This task starts with a given logic diagram and culminates with a set of Boolean functions, a truth table, or, possibly, an explanation of the circuit operation. If the logic diagram to be analyzed is accompanied by a function name or an explanation of what it is assumed to accomplish, then the analysis problem reduces to a verification of the stated function. The analysis can be performed manually by finding the Boolean functions or truth table or by using a computer simulation program. The first step in the analysis is to make sure that the given circuit is combinational and not sequential. The diagram of a combinational circuit has logic gates with no feedback paths or memory elements. A feedback path is a connection from the output of one gate to the input of a second gate whose output forms part of the input to the first gate. Feedback paths in a digital circuit define a sequential circuit and must be analyzed by special methods and will not be considered here. Once the logic diagram is verified to be that of a combinational circuit, one can proceed to obtain the output Boolean functions or the truth table. If the function of the circuit is under investigation, then it is necessary to interpret the operation of the circuit from the derived Boolean functions or truth table. The success of such an investigation is enhanced if one has previous experience and familiarity with a wide variety of digital circuits.

3 To obtain the output Boolean functions from a logic diagram, we proceed as follows: 1. Label all gate outputs that are a function of input variables with arbitrary symbols but with meaningful names. Determine the Boolean functions for each gate output. 2. Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates. 3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained. 4. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables. The analysis of the combinational circuit of Fig. 4.2 illustrates the proposed procedure. We note that the circuit has three binary inputs A, B, and C and two binary outputs F1 and F2. The outputs of various gates are labeled with intermediate symbols. The outputs of gates that are a function only of input variables are T1 and T2. Output F2 can easily be derived from the input variables. The Boolean functions for these three outputs are F2 = AB + AC + BC T1 = A + B + C T2 = ABC Next, we consider outputs of gates that are a function of already defined symbols: T3 = F 2T1; F1 = T3 + T2 To obtain F1 as a function of A, B, and C, we form a series of substitutions as follows:

4 The derivation of the truth table for a circuit is a straightforward process once the output Boolean functions are known. To obtain the truth table directly from the logic diagram without going through the derivations of the Boolean functions, we proceed as follows: 1. Determine the number of input variables in the circuit. For n inputs, form the 2n possible input combinations and list the binary numbers from 0 to (2n - 1) in a table. 2. Label the outputs of selected gates with arbitrary symbols. 3. Obtain the truth table for the outputs of those gates which are a function of the input variables only. 4. Proceed to obtain the truth table for the outputs of those gates which are a function of previously defined values until the columns for all outputs are determined. This process is illustrated with the circuit of Fig In Table 4.1, we form the eight possible combinations for the three input variables. The truth table for F2 is determined directly from the values of A, B, and C, with F2 equal to 1 for any combination that has two or three inputs equal to 1. The truth table for F_2 is the complement of F2. The truth tables for T1 and T2 are the OR and AND functions of the input variables, respectively. The values for T3 are derived from T1 and F_2:T3 is equal to 1 when both T1 and F_2 are equal to 1, and T3 is equal to 0 otherwise. Finally, F1 is equal to 1 for those combinations in which either T2 or T3 or both are equal to 1. Inspection of the truth table combinations for A, B, C, F1, and F2 shows that it is identical to the truth table of the full adder given in Section 4.5 for x, y, z, S, and C, respectively. DESIGN PROCEDURE: The design of combinational circuits starts from the specification of the design objective and culminates in a logic circuit diagram or a set of Boolean functions from which the logic diagram can be obtained. The procedure involves the following steps: 1. From the specifications of the circuit, determine the required number of inputs and outputs and assign a symbol to each. 2. Derive the truth table that defines the required relationship between inputs and outputs. 3. Obtain the simplified Boolean functions for each output as a function of the input variables. 4. Draw the logic diagram and verify the correctness of the design (manually or by simulation).

5 A truth table for a combinational circuit consists of input columns and output columns. The input columns are obtained from the 2n binary numbers for the n input variables. The binary values for the outputs are determined from the stated specifications. The output functions specified in the truth table give the exact definition of the combinational circuit. It is important that the verbal specifications be interpreted correctly in the truth table, as they are often incomplete, and any wrong interpretation may result in an incorrect truth table. Code Conversion Example: To convert from binary code A to binary code B, the input lines must supply the bit combination of elements as specified by code A and the output lines must generate the corresponding bit combination of code B. A combinational circuit performs this transformation by means of logic gates. The design procedure will be illustrated by an example that converts binary coded decimal (BCD) to the excess-3 code for the decimal digits. Since each code uses four bits to represent a decimal digit, there must be four input variables and four output variables. We designate the four input binary variables by the symbols A, B, C, and D, and the four output variables by w, x, y, and z. The truth table relating the input and output variables is shown in Table 4.2. The bit combinations for the inputs and their corresponding outputs are obtained directly from Section 1.7. Note that four binary variables may have 16 bit combinations, but only 10 are listed in the truth table. The six bit combinations not listed for the input variables are don t-care combinations. These values have no meaning in BCD and we assume that they will never occur in actual operation of the circuit. Therefore, we are at liberty to assign to the output variables either a 1 or a 0, whichever gives a simpler circuit. The maps in Fig. 4.3 are plotted to obtain simplified Boolean functions for the outputs. Each one of the four maps represents one of the four outputs of the circuit as a function of the four input variables. The 1 s marked inside the squares are obtained from the minterms that make the output equal to 1. The 1 s are obtained from the truth table by going over the output columns one at a time. For example, the column under output z has five 1 s; therefore, the map for z has five 1 s, each being in a square corresponding to the minterm that makes z equal to 1. The six don t-care minterms 10 through 15 are marked with an X. One possible way to simplify the functions into sum-of-products form is listed under the map of each variable. A two-level logic diagram for each output may be obtained directly from the Boolean expressions derived from the maps. There are various other possibilities for a logic diagram that implements this circuit. The expressions obtained in Fig. 4.3 may be manipulated algebraically for the purpose of using common gates for two or more outputs. This manipulation, shown next, illustrates the flexibility obtained with multiple-output systems when implemented with three or more levels of gates:

6 The logic diagram that implements these expressions is shown in Fig Note that the OR gate whose output is C + D has been used to implement partially each of three outputs. Not counting input inverters, the implementation in sum-of-products form requires seven AND gates and three OR gates. The implementation of Fig. 4.4 requires four AND gates, four OR gates, and one inverter. If only the normal inputs are available, the first implementation will require inverters for variables B, C, and D, and the second implementation will require inverters for variables B and D. Thus, the three-level logic circuit requires fewer gates, all of which in turn require no more than two inputs.

8 A B Carry Sum sum of products Exclusive-OR and AND Full Adder: A full adder has three inputs X, Y, and a carry in Z, such that multiple adders can be used to add larger numbers. To remove ambiguity between the input and output carry lines, the carry in is labelled C i or C in while the carry out is labelled C o or C out. A full adder is a logical circuit that performs an addition operation on three binary digits. The full adder produces a sum and carry value, which are both binary digits. It can be combined with other full adders or work on its own.

9 A full adder can be trivially built using our ordinary design methods for combinatorial circuits. Here is the resulting circuit diagram using NAND gates only: C o=a BC i+ab C i+abc i +ABC i by manipulating C o, we can see thatc o= C i(a +A BC i +ABC i +ABC i By manipulating S, we can see that S=C i (A B) B)+AB; S=A B C i A full adder can be constructed from two half adders by connecting A and B to the input of one half adder, connecting the sum from that to an input to the second adder, connecting Ci to the other input and OR the two carry outputs. Equivalently, S could be made the three-bit xor of A, B, and Ci and Co could be made the three-bit majority function of A, B, and Ci. The output of the full adder is the two-bit arithmetic sum of three one-bit numbers.

11

12 Subtractor : In electronics, a subtractor can be designed using the same approach as that of an adder. The binary subtraction process is summarized below. As with an adder, in the general case of calculations on multi-bit numbers, three bits are involved in performing the subtraction for each bit: the minuend (Xi), subtrahend (Yi), and a borrow in from the previous (less significant) bit order position (Bi). The outputs are the difference bit (Di) and borrow bit Bi + 1. Half subtractor : The half-subtractor is a combinational circuit which is used to perform subtraction of two bits. It has two inputs, X (minuend) and Y (subtrahend) and two outputs D (difference) and B (borrow). Such a circuit is called a half -subtractor because it enables a borrow out of the current arithmetic operation but no borrow in from a previous arithmetic operation. The truth table for the half subtractor is given below. D=X Y+XY or D= X Y; B=X Y X Y D B Full Subtractor As in the case of the addition using logic gates, a full subtractor is made by combining two half-subtractors and an additional OR-gate. A full subtractor has the borrow in capability (denoted as BORIN in the diagram below) and so allows cascading which results in the possibility of multi-bit subtraction. The final truth table for a full subtractor looks like;the circuit diagram for a full subtractor is given below. A B BOR IN D BOR OUT

13 N-Bit Parallel Subtractor: The subtraction can be carried out by taking the 1's or 2's complement of the number to be subtracted. For example we can perform the subtraction (A-B) by adding either 1's or 2's complement of B to A. That means we can use a binary adder to perform the binary subtraction. 4 Bit Parallel Subtractor The number to be subtracted (B) is first passed through inverters to obtain its 1's complement. The 4-bit adder then adds A and 2's complement of B to produce the subtraction. S 3 S 2 S 1 S 0 represents the result of binary subtraction (A-B) and carry output C out represents the polarity of the result. If A > B then Cout = 0 and the result of binary form (A-B) then C out = 1 and the result is in the 2's complement form. Block diagram

15 Decimal Adder: Add two BCD's 9 inputs: two BCD's and one carry-in 5 outputs: one BCD and one carry-out Design approaches A truth table with 29 entries use binary full Adders» the decimal sum must be not larger than 19 (= )» the BCD sum is no larger than 9; (S8S4S2S1) (1001) The Sum of a BCD Adder :

16 BCD Adjustment When the binary sum is equal to or less than 1001, the corresponding BCD number is identical, no conversion is needed. When the binary sum is greater than 1001, an addition of 6 (0110) converts it to the correct BCD representation and also produces an output carry as required. Modifications are needed if the sum > 9 (1001) C must be set to 1, if When C = 1, add 0110 to the binary sum.

17 Binary Multiplier Performed in the same way as multiplication of decimal numbers. Partial products: AND operations. 2-bit 2-bit 4-bit (n n 2n bits) For J multiplier and K multiplicand bits, we need (J K) AND gates and (J - 1) K-bit adders to produce a product of (J + K) bits. K = 4 and J = 3: 12 AND gates and two 4-bit adders: produce a 7-bit product.

18 General Form: Array Multiplier :

19 Magnitude Comparator A magnitude comparator compares two numbers A and B and determines their relative magnitudes. The results of comparison between two numbers are: A > B, A = B, A < B Design Approaches: The truth table for two n-bit numbers comparison» 2 2n entries - too cumbersome for large n use inherent regularity of the problem (algorithm approach);algorithm a procedure which specifies a finite set of steps, reduce design efforts; reduce human errors. Consider two 4-bit numbers, A = A3A2A1A0, B = B3B2B1B0 o A and B are equal (A = B) if A3 = B3, A2 = B2, A1 = B1, and A0 = B0. o The equality of each pair of bits can be expressed with an exclusive-nor function as: o xi = AiBi + Ai Bi for i = 0, 1, 2, 3; xi = (Ai Bi + AiBi ) ;xi = 1 only if the pair of bits in position i are equal (both are 1 or both are 0).For equality to exist (A = B), all xi variables must be equal to 1: (A = B) = x3x2x1x0;to determine whether (A > B) or (A < B), starting from the MSB, if the two bits are equal, then compare the next lower significant pair of bits until a pair of unequal bits is reached. o If the corresponding bit of A is 1 and that of B is 0, we conclude that A > B. o If the corresponding digit of A is 0 and that of B is 1, we have A < B. o The sequential comparison can be expressed by the two Boolean functions (A > B) = A3B3 + x3a2b2 + x3x2a1b1 + x3x2x1a0b0 (A < B) = A3 B3 + x3a2 B2 + x3x2a1 B1 + x3x2x1a0 B0

20 Decoders: A decoder converts binary information from n input lines to a maximum of 2n unique output lines. A n-to-m decoder (m 2n); a binary code of n bits has 2n distinct information with n input variables; up to 2n output lines only one output can be active (high) at any time. Two-to-four Decoder with Enable: Enable input is added to control the circuit operation.

21 Decoder Expansion: 3 to 8 Decoder: We know that 2 to 4 Decoder has two inputs, A1 & A0 and four outputs, Y3 to Y0. Whereas, 3 to 8 Decoder has three inputs A2, A1 & A0 and eight outputs, Y7 to Y0. We can find the number of lower order decoders required for implementing higher order decoder using the following formula. Required number of lower order decoders=m2/m1 Where, m1 is the number of outputs of lower order decoder. m2 is the number of outputs of higher order decoder. Here, m1= 4 and m2= 8. Substitute, these two values in the above formula. Required number of 2to4 decoders =8/4=2 Therefore, we require two 2 to 4 decoders for implementing one 3 to 8 decoder. The block diagram of 3 to 8 decoder using 2 to 4 decoders is shown in the following figure. The parallel inputs A1 & A0 are applied to each 2 to 4 decoder. The complement of input A2 is connected to Enable, E of lower 2 to 4 decoder in order to get the outputs, Y3 to Y0. These are the lower four min terms. The input, A2 is directly connected to Enable, E of upper 2 to 4 decoder in order to get the outputs, Y7 to Y4. These are the higher four min terms.

22 Expand two 3-to-8 decoder with Enable to a 4-to-16 decoder Universal Combinational Logic Implementation : A decoder provides the 2n minterms of n input variables. A decoder and an external OR gate can implement any Boolean function of n input variables in sum-of-minterm form. For example, a full-adder has its sum S(x,y,z) = (1,2,4,7) and carry C(x,y,z) = (3,5,6,7). Encoders: The inverse function of a decoder and has 2n (or fewer) input lines and n output lines. The output lines generate the binary code corresponding to the input value. Example:

23 Priority Encoder: Encoder that includes the priority function; Resolve the ambiguity of illegal inputs, only one of the input is encoded, the input having the highest priority will take precedence. Example: D3 has the highest priority» D0 has the lowest priority» X: don't-care conditions» V: valid output indicator x = D2 + D3 y = D3 + D1 D2 V = D0 + D1 + D2 + D3 Multiplexers: Select from one of many inputs and passes it to a single output, controlled by a set of selection lines. A multiplexer is also called a data selector. Normally, there are 2n inputs and n selection lines whose bit combinations determine which input is selected. Example: (two-to-one multiplexer)

24 Quadruple 2-to-1 Multiplexer: Implementation of Higher-order Multiplexers. Now, let us implement the following two higher-order Multiplexers using lower-order Multiplexers. 8x1 Multiplexer 16x1 Multiplexer 8x1 Multiplexer In this section, let us implement 8x1 Multiplexer using 4x1 Multiplexers and 2x1 Multiplexer. We know that 4x1 Multiplexer has 4 data inputs, 2 selection lines and one output. Whereas, 8x1 Multiplexer has 8 data inputs, 3 selection lines and one output.

25 So, we require two 4x1 Multiplexers in first stage in order to get the 8 data inputs. Since, each 4x1 Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by considering the outputs of first stage as inputs and to produce the final output. Let the 8x1 Multiplexer has eight data inputs I7 to I0, three selection lines s2, s1 & s0 and one output Y. The Truth table of 8x1 Multiplexer is shown below. Selection Inputs Output S2 S1 S0 Y I I I I I I I I7 We can implement 8x1 Multiplexer using lower order Multiplexers easily by considering the above Truth table. The block diagram of 8x1 Multiplexer is shown in the following figure. The same selection lines, s1 & s0 are applied to both 4x1 Multiplexers. The data inputs of upper 4x1 Multiplexer are I7 to I4 and the data inputs of lower 4x1 Multiplexer are I3 to I0. Therefore, each 4x1 Multiplexer produces an output based on the values of selection lines, s1 & s0.

26 The outputs of first stage 4x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is present in second stage. The other selection line, s2 is applied to 2x1 Multiplexer. If s2 is zero, then the output of 2x1 Multiplexer will be one of the 4 inputs I3 to I0 based on the values of selection lines s1 & s0. If s2 is one, then the output of 2x1 Multiplexer will be one of the 4 inputs I7 to I4 based on the values of selection lines s1 & s0. Therefore, the overall combination of two 4x1 Multiplexers and one 2x1 Multiplexer performs as one 8x1 Multiplexer. 16x1 Multiplexer In this section, let us implement 16x1 Multiplexer using 8x1 Multiplexers and 2x1 Multiplexer. We know that 8x1 Multiplexer has 8 data inputs, 3 selection lines and one output. Whereas, 16x1 Multiplexer has 16 data inputs, 4 selection lines and one output. So, we require two 8x1 Multiplexers in first stage in order to get the 16 data inputs. Since, each 8x1 Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by considering the outputs of first stage as inputs and to produce the final output. Let the 16x1 Multiplexer has sixteen data inputs I15 to I0, four selection lines s3 to s0 and one output Y. The Truth table of 16x1 Multiplexer is shown below. Selection Inputs Output S3 S2 S1 S0 Y I I I I I I I I I I I I I I I I15

27 We can implement 16x1 Multiplexer using lower order Multiplexers easily by considering the above Truth table. The block diagram of 16x1 Multiplexer is shown in the following figure. The same selection lines, s2, s1 & s0 are applied to both 8x1 Multiplexers. The data inputs of upper 8x1 Multiplexer are I15 to I8 and the data inputs of lower 8x1 Multiplexer are I7 to I0. Therefore, each 8x1 Multiplexer produces an output based on the values of selection lines, s2, s1 & s0. The outputs of first stage 8x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is present in second stage. The other selection line, s3 is applied to 2x1 Multiplexer. If s3 is zero, then the output of 2x1 Multiplexer will be one of the 8 inputs Is7 to I0 based on the values of selection lines s2, s1 & s0. If s3 is one, then the output of 2x1 Multiplexer will be one of the 8 inputs I15 to I8 based on the values of selection lines s2, s1 & s0. Therefore, the overall combination of two 8x1 Multiplexers and one 2x1 Multiplexer performs as one 16x1 Multiplexer. Boolean Function Implementation: MUX has a structure composed of a decoder and an OR gate 2n-to-1 MUX can implement any Boolean function of n+1 input variables.n of these input variables are used as the selection lines. The remaining single variable is used for the data inputs. If the single variable is denoted by z, each data input of the multiplexer will be z, z, 1, or 0.

28 Demultiplexer: A demultiplexer performs the reverse operation of a multiplexer i.e. it receives one input and distributes it over several outputs. It has only one input, n outputs, m select input. At a time only one output line is selected by the select lines and the input is transmitted to the selected output line. A de-multiplexer is equivalent to a single pole multiple way switch as shown in fig. Demultiplexers come in multiple variations. 1 : 2 demultiplexer 1 : 4 demultiplexer 1 : 16 demultiplexer 1 : 32 demultiplexer 1x4 De-Multiplexer : 1x4 De-Multiplexer has one input I, two selection lines, s 1 & s 0 and four outputs Y 3, Y 2, Y 1 &Y 0. The block diagram of 1x4 De-Multiplexer is shown in the following figure. The single input I will be connected to one of the four outputs, Y 3 to Y 0 based on the values of selection lines s 1 & s0. The Truth table of 1x4 De-Multiplexer is shown below. Selection Inputs Outputs S 1 S 0 Y 3 Y 2 Y 1 Y I I I I From the above Truth table, we can directly write the Boolean functions for each output as Y 3=S 1 S 0 Y 2= S 1 S 0 Y 1= S 1 S 0 Y 0= S 1 S 0

29 We can implement these Boolean functions using Inverters & 3-input AND gates. The circuit diagram of 1x4 De-Multiplexer is shown in the following figure. We can easily understand the operation of the above circuit. Similarly, you can implement 1x8 De-Multiplexer and 1x16 De-Multiplexer by following the same procedure. 1x4 De-Multiplexer WITH Enable : Block diagram Truth Table: Implementation of Higher-order De-Multiplexers Now, let us implement the following two higher-order De-Multiplexers using lower-order De- Multiplexers. 1x8 De-Multiplexer 1x16 De-Multiplexer 1x8 De-Multiplexer In this section, let us implement 1x8 De-Multiplexer using 1x4 De-Multiplexers and 1x2 De- Multiplexer. We know that 1x4 De-Multiplexer has single input, two selection lines and four outputs. Whereas, 1x8 De-Multiplexer has single input, three selection lines and eight outputs. So, we require two 1x4 De-Multiplexers in second stage in order to get the final eight outputs. Since, the number of inputs in second stage is two, we require 1x2 DeMultiplexer in first

30 stage so that the outputs of first stage will be the inputs of second stage. Input of this 1x2 De- Multiplexer will be the overall input of 1x8 De-Multiplexer. Let the 1x8 De-Multiplexer has one input I, three selection lines s 2, s 1 & s 0 and outputs Y 7 to Y 0. The Truth table of 1x8 De-Multiplexer is shown below. Selection Inputs Outputs s 2 s 1 s 0 Y 7 Y 6 Y 5 Y 4 Y 3 Y 2 Y 1 Y I I I I I I I I We can implement 1x8 De-Multiplexer using lower order Multiplexers easily by considering the above Truth table. The block diagram of 1x8 De-Multiplexer is shown in the following figure. The common selection lines, s 1 & s 0 are applied to both 1x4 De-Multiplexers. The outputs of upper 1x4 De-Multiplexer are Y 7 to Y 4 and the outputs of lower 1x4 De-Multiplexer are Y 3 to Y 0. The other selection line, s 2 is applied to 1x2 De-Multiplexer. If s 2 is zero, then one of the four outputs of lower 1x4 De-Multiplexer will be equal to input, I based on the values of selection lines s 1 & s 0. Similarly, if s 2 is one, then one of the four outputs of upper 1x4 DeMultiplexer will be equal to input, I based on the values of selection lines s 1 & s 0.

31 1x16 De-Multiplexer In this section, let us implement 1x16 De-Multiplexer using 1x8 De-Multiplexers and 1x2 De- Multiplexer. We know that 1x8 De-Multiplexer has single input, three selection lines and eight outputs. Whereas, 1x16 De-Multiplexer has single input, four selection lines and sixteen outputs. So, we require two 1x8 De-Multiplexers in second stage in order to get the final sixteen outputs. Since, the number of inputs in second stage is two, we require 1x2 DeMultiplexer in first stage so that the outputs of first stage will be the inputs of second stage. Input of this 1x2 De-Multiplexer will be the overall input of 1x16 De-Multiplexer. Let the 1x16 De-Multiplexer has one input I, four selection lines s 3, s 2, s 1 & s 0 and outputs Y 15 to Y 0. The block diagram of 1x16 De-Multiplexer using lower order Multiplexers is shown in the following figure. The common selection lines s 2, s 1 & s 0 are applied to both 1x8 De-Multiplexers. The outputs of upper 1x8 De-Multiplexer are Y 15 to Y 8 and the outputs of lower 1x8 DeMultiplexer are Y 7 to Y 0. The other selection line, s 3 is applied to 1x2 De-Multiplexer. If s 3 is zero, then one of the eight outputs of lower 1x8 De-Multiplexer will be equal to input, I based on the values of selection lines s 2, s 1 & s 0. Similarly, if s3 is one, then one of the 8 outputs of upper 1x8 De-Multiplexer will be equal to input, I based on the values of selection lines s 2, s 1 & s 0.

32 Applications of Demultiplexer: 1. Demultiplexer is used to connect a single source to multiple destinations. The main application area of demultiplexer is communication system where multiplexer are used. Most of the communication system are bidirectional i.e. they function in both ways (transmitting and receiving signals). Hence, for most of the applications, the multiplexer and demultiplexer work in sync. Demultiplexer are also used for reconstruction of parallel data and ALU circuits. 2. Communication System Communication system use multiplexer to carry multiple data like audio, video and other form of data using a single line for transmission. This process make the transmission easier. The demultiplexer receive the output signals of the multiplexer and converts them back to the original form of the data at the receiving end. The multiplexer and demultiplexer work together to carry out the process of transmission and reception of data in communication system. 3. ALU (Arithmetic Logic Unit) In an ALU circuit, the output of ALU can be stored in multiple registers or storage units with the help of demultiplexer. The output of ALU is fed as the data input to the demultiplexer. Each output of demultiplexer is connected to multiple register which can be stored in the registers. 4. Serial to parallel converter A serial to parallel converter is used for reconstructing parallel data from incoming serial data stream. In this technique, serial data from the incoming serial data stream is given as data input to the demultiplexer at the regular intervals. A counter is attach to the control input of the demultiplexer. This counter directs the data signal to the output of the demultiplexer where these data signals are stored. When all data signals have been stored, the output of the demultiplexer can be retrieved and read out in parallel.

33

### Chapter 4. Combinational Logic

Chapter 4. Combinational Logic Tong In Oh 1 4.1 Introduction Combinational logic: Logic gates Output determined from only the present combination of inputs Specified by a set of Boolean functions Sequential

### NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-II COMBINATIONAL CIRCUITS

NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF ELETRONICS AND COMMUNICATION ENGINEERING COURSE NOTES SUBJECT: DIGITAL ELECTRONICS CLASS: II YEAR ECE SUBJECT CODE: EC2203

### Combinational Circuits

Combinational Circuits Combinational circuit consists of an interconnection of logic gates They react to their inputs and produce their outputs by transforming binary information n input binary variables

### COMBINATIONAL LOGIC CIRCUITS

COMBINATIONAL LOGIC CIRCUITS 4.1 INTRODUCTION The digital system consists of two types of circuits, namely: (i) Combinational circuits and (ii) Sequential circuits A combinational circuit consists of logic

### Chap.3 3. Chap reduces the complexity required to represent the schematic diagram of a circuit Library

3.1 Combinational Circuits 2 Chap 3. logic circuits for digital systems: combinational vs sequential Combinational Logic Design Combinational Circuit (Chap 3) outputs are determined by the present applied

### EE 8351 Digital Logic Circuits Ms.J.Jayaudhaya, ASP/EEE

EE 8351 Digital Logic Circuits Ms.J.Jayaudhaya, ASP/EEE 1 Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables, logic gates, and output

### Combinational Logic. Prof. Wangrok Oh. Dept. of Information Communications Eng. Chungnam National University. Prof. Wangrok Oh(CNU) 1 / 93

Combinational Logic Prof. Wangrok Oh Dept. of Information Communications Eng. Chungnam National University Prof. Wangrok Oh(CNU) / 93 Overview Introduction 2 Combinational Circuits 3 Analysis Procedure

UNIT II - COMBINATIONAL LOGIC Part A 2 Marks. 1. Define Combinational circuit A combinational circuit consist of logic gates whose outputs at anytime are determined directly from the present combination

### Combinational Logic with MSI and LSI

1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010

### Combinational Logic Circuits

Combinational Logic Circuits By Dr. M. Hebaishy Digital Logic Design Ch- Rem.!) Types of Logic Circuits Combinational Logic Memoryless Outputs determined by current values of inputs Sequential Logic Has

### 1. Mark the correct statement(s)

1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another

### DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

C H A P T E R 6 DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS OUTLINE 6- Binary Addition 6-2 Representing Signed Numbers 6-3 Addition in the 2 s- Complement System 6-4 Subtraction in the 2 s- Complement

### CO Computer Architecture and Programming Languages CAPL. Lecture 9

CO20-320241 Computer Architecture and Programming Languages CAPL Lecture 9 Dr. Kinga Lipskoch Fall 2017 A Four-bit Number Circle CAPL Fall 2017 2 / 38 Functional Parts of an ALU CAPL Fall 2017 3 / 38 Addition

### NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY CS 2202 DIGITAL PRINCIPLES AND SYSTEM DESIGN

NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF INFORMATION TECHNOLOGY CS 2202 DIGITAL PRINCIPLES AND SYSTEM DESIGN UNIT 2 COMBINATIONAL LOGIC Combinational circuits Analysis

### Combinational Logic II

Combinational Logic II Ranga Rodrigo July 26, 2009 1 Binary Adder-Subtractor Digital computers perform variety of information processing tasks. Among the functions encountered are the various arithmetic

### Computer Logical Organization Tutorial

Computer Logical Organization Tutorial COMPUTER LOGICAL ORGANIZATION TUTORIAL Simply Easy Learning by tutorialspoint.com tutorialspoint.com i ABOUT THE TUTORIAL Computer Logical Organization Tutorial Computer

Get Free notes at Module-I One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)

### Combinational Logic Use the Boolean Algebra and the minimization techniques to design useful circuits No feedback, no memory Just n inputs, m outputs

Combinational Logic Use the Boolean Algebra and the minimization techniques to design useful circuits No feedback, no memory Just n inputs, m outputs and an arbitrary truth table Analysis Procedure We

### COMPUTER ARCHITECTURE AND ORGANIZATION Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital

Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital hardware modules that accomplish a specific information-processing task. Digital systems vary in

### D I G I T A L C I R C U I T S E E

D I G I T A L C I R C U I T S E E Digital Circuits Basic Scope and Introduction This book covers theory solved examples and previous year gate question for following topics: Number system, Boolean algebra,

### UNIT- V COMBINATIONAL LOGIC DESIGN

UNIT- V COMBINATIONAL LOGIC DESIGN NOTE: This is UNIT-V in JNTUK and UNIT-III and HALF PART OF UNIT-IV in JNTUA SYLLABUS (JNTUK)UNIT-V: Combinational Logic Design: Adders & Subtractors, Ripple Adder, Look

### LOGIC CIRCUITS. Kirti P_Didital Design 1

LOGIC CIRCUITS Kirti P_Didital Design 1 Introduction The digital system consists of two types of circuits, namely (i) Combinational circuits and (ii) Sequential circuit A combinational circuit consists

### This tutorial gives a complete understanding on Computer Logical Organization starting from basic computer overview till its advanced architecture.

About the Tutorial Computer Logical Organization refers to the level of abstraction above the digital logic level, but below the operating system level. At this level, the major components are functional

### Chapter Three. Digital Components

Chapter Three 3.1. Combinational Circuit A combinational circuit is a connected arrangement of logic gates with a set of inputs and outputs. The binary values of the outputs are a function of the binary

### Department of Electrical and Computer Engineering University of Wisconsin - Madison. ECE/CS 352 Digital System Fundamentals.

Department of Electrical and Computer Engineering University of Wisconsin - Madison ECE/C 352 Digital ystem Fundamentals Quiz #2 Thursday, March 7, 22, 7:15--8:3PM 1. (15 points) (a) (5 points) NAND, NOR

### Week 7: Assignment Solutions

Week 7: Assignment Solutions 1. In 6-bit 2 s complement representation, when we subtract the decimal number +6 from +3, the result (in binary) will be: a. 111101 b. 000011 c. 100011 d. 111110 Correct answer

Addition and multiplication Arithmetic is the most basic thing you can do with a computer, but it s not as easy as you might expect! These next few lectures focus on addition, subtraction, multiplication

### Objectives: 1. Design procedure. 2. Fundamental circuits. 1. Design procedure

Objectives: 1. Design procedure. 2. undamental circuits. 1. Design procedure Design procedure has five steps: o Specification. o ormulation. o Optimization. o Technology mapping. o Verification. Specification:

### R10. II B. Tech I Semester, Supplementary Examinations, May

SET - 1 1. a) Convert the following decimal numbers into an equivalent binary numbers. i) 53.625 ii) 4097.188 iii) 167 iv) 0.4475 b) Add the following numbers using 2 s complement method. i) -48 and +31

Binary Addition The rules for binary addition are 0 + 0 = 0 Sum = 0, carry = 0 0 + 1 = 0 Sum = 1, carry = 0 1 + 0 = 0 Sum = 1, carry = 0 1 + 1 = 10 Sum = 0, carry = 1 When an input carry = 1 due to a previous

### END-TERM EXAMINATION

(Please Write your Exam Roll No. immediately) END-TERM EXAMINATION DECEMBER 2006 Exam. Roll No... Exam Series code: 100919DEC06200963 Paper Code: MCA-103 Subject: Digital Electronics Time: 3 Hours Maximum

### VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS YEAR / SEMESTER: II / III ACADEMIC YEAR: 2015-2016 (ODD

### 10EC33: DIGITAL ELECTRONICS QUESTION BANK

10EC33: DIGITAL ELECTRONICS Faculty: Dr.Bajarangbali E Examination QuestionS QUESTION BANK 1. Discuss canonical & standard forms of Boolean functions with an example. 2. Convert the following Boolean function

### Chapter 3 Part 2 Combinational Logic Design

University of Wisconsin - Madison ECE/Comp Sci 352 Digital Systems Fundamentals Kewal K. Saluja and Yu Hen Hu Spring 2002 Chapter 3 Part 2 Combinational Logic Design Originals by: Charles R. Kime and Tom

### B.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN

B.Tech II Year I Semester () Regular Examinations December 2014 (Common to IT and CSE) (a) If 1010 2 + 10 2 = X 10, then X is ----- Write the first 9 decimal digits in base 3. (c) What is meant by don

### Arithmetic Circuits. Nurul Hazlina Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit

Nurul Hazlina 1 1. Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit Nurul Hazlina 2 Introduction 1. Digital circuits are frequently used for arithmetic operations 2. Fundamental

### Injntu.com Injntu.com Injntu.com R16

1. a) What are the three methods of obtaining the 2 s complement of a given binary (3M) number? b) What do you mean by K-map? Name it advantages and disadvantages. (3M) c) Distinguish between a half-adder

### Computer Architecture Set Four. Arithmetic

Computer Architecture Set Four Arithmetic Arithmetic Where we ve been: Performance (seconds, cycles, instructions) Abstractions: Instruction Set Architecture Assembly Language and Machine Language What

### DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNIC Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COMBINATIONAL LOGIC DEIGN: ARITHMETIC (THROUGH EXAMPLE) 2nd (Autumn) term 28/29 COMBINATIONAL LOGIC

### Chapter 3 Arithmetic for Computers

Chapter 3 Arithmetic for Computers 1 Arithmetic Where we've been: Abstractions: Instruction Set Architecture Assembly Language and Machine Language What's up ahead: Implementing the Architecture operation

### Experiment 7 Arithmetic Circuits Design and Implementation

Experiment 7 Arithmetic Circuits Design and Implementation Introduction: Addition is just what you would expect in computers. Digits are added bit by bit from right to left, with carries passed to the

### CAD4 The ALU Fall 2009 Assignment. Description

CAD4 The ALU Fall 2009 Assignment To design a 16-bit ALU which will be used in the datapath of the microprocessor. This ALU must support two s complement arithmetic and the instructions in the baseline

### R07. Code No: V0423. II B. Tech II Semester, Supplementary Examinations, April

SET - 1 II B. Tech II Semester, Supplementary Examinations, April - 2012 SWITCHING THEORY AND LOGIC DESIGN (Electronics and Communications Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

### Microcomputers. Outline. Number Systems and Digital Logic Review

Microcomputers Number Systems and Digital Logic Review Lecture 1-1 Outline Number systems and formats Common number systems Base Conversion Integer representation Signed integer representation Binary coded

### EC2303-COMPUTER ARCHITECTURE AND ORGANIZATION

EC2303-COMPUTER ARCHITECTURE AND ORGANIZATION QUESTION BANK UNIT-II 1. What are the disadvantages in using a ripple carry adder? (NOV/DEC 2006) The main disadvantage using ripple carry adder is time delay.

### UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT

UNIT-III 1 KNREDDY UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT Register Transfer: Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Micro operations Logic

### Lecture (03) Binary Codes Registers and Logic Gates

Lecture (03) Binary Codes Registers and Logic Gates By: Dr. Ahmed ElShafee Binary Codes Digital systems use signals that have two distinct values and circuit elements that have two stable states. binary

### Chapter 4: Combinational Logic

Chapter 4: Combinational Logic Combinational Circuit Design Analysis Procedure (Find out nature of O/P) Boolean Expression Approach Truth Table Approach Design Procedure Example : BCD to Excess-3 code

### LECTURE 4. Logic Design

LECTURE 4 Logic Design LOGIC DESIGN The language of the machine is binary that is, sequences of 1 s and 0 s. But why? At the hardware level, computers are streams of signals. These signals only have two

### II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION. Answer ONE question from each unit.

Hall Ticket Number: 14CS IT303 November, 2017 Third Semester Time: Three Hours Answer Question No.1 compulsorily. II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION Common for CSE & IT Digital Logic

### EE292: Fundamentals of ECE

EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 22 121115 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Binary Number Representation Binary Arithmetic Combinatorial Logic

INDEX Absorption law, 31, 38 Acyclic graph, 35 tree, 36 Addition operators, in VHDL (VHSIC hardware description language), 192 Algebraic division, 105 AND gate, 48 49 Antisymmetric, 34 Applicable input

### 60-265: Winter ANSWERS Exercise 4 Combinational Circuit Design

60-265: Winter 2010 Computer Architecture I: Digital Design ANSWERS Exercise 4 Combinational Circuit Design Question 1. One-bit Comparator [ 1 mark ] Consider two 1-bit inputs, A and B. If we assume that

### CS8803: Advanced Digital Design for Embedded Hardware

CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems

### Basic Arithmetic (adding and subtracting)

Basic Arithmetic (adding and subtracting) Digital logic to show add/subtract Boolean algebra abstraction of physical, analog circuit behavior 1 0 CPU components ALU logic circuits logic gates transistors

### ECEN 468 Advanced Logic Design

ECEN 468 Advanced Logic Design Lecture 26: Verilog Operators ECEN 468 Lecture 26 Operators Operator Number of Operands Result Arithmetic 2 Binary word Bitwise 2 Binary word Reduction 1 Bit Logical 2 Boolean

### Number System. Introduction. Decimal Numbers

Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

28 The McGraw-Hill Companies, Inc. All rights reserved. 28 The McGraw-Hill Companies, Inc. All rights reserved. All or Nothing Gate Boolean Expression: A B = Y Truth Table (ee next slide) or AB = Y 28

### Parallel logic circuits

Computer Mathematics Week 9 Parallel logic circuits College of Information cience and Engineering Ritsumeikan University last week the mathematics of logic circuits the foundation of all digital design

### Chapter 6 Combinational-Circuit Building Blocks

Chapter 6 Combinational-Circuit Building Blocks Commonly used combinational building blocks in design of large circuits: Multiplexers Decoders Encoders Comparators Arithmetic circuits Multiplexers A multiplexer

### Principles of Digital Techniques PDT (17320) Assignment No State advantages of digital system over analog system.

Assignment No. 1 1. State advantages of digital system over analog system. 2. Convert following numbers a. (138.56) 10 = (?) 2 = (?) 8 = (?) 16 b. (1110011.011) 2 = (?) 10 = (?) 8 = (?) 16 c. (3004.06)

NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni-625531 Question Bank for the Units I to V SEMESTER BRANCH SUB CODE 3rd Semester B.E. / B.Tech. Electrical and Electronics Engineering

### Combinational Circuit Design

Modeling Combinational Circuits with Verilog Prof. Chien-Nan Liu TEL: 3-42275 ext:34534 Email: jimmy@ee.ncu.edu.tw 3- Combinational Circuit Design Outputs are functions of inputs inputs Combinational Circuit

### 4. Write a sum-of-products representation of the following circuit. Y = (A + B + C) (A + B + C)

COP 273, Winter 26 Exercises 2 - combinational logic Questions. How many boolean functions can be defined on n input variables? 2. Consider the function: Y = (A B) (A C) B (a) Draw a combinational logic

### Department of Electrical Engineering McGill University ECSE 221 Introduction to Computer Engineering Assignment 2 Combinational Logic

Department of Electrical Engineering McGill University ECSE 221 Introduction to Computer Engineering Assignment 2 Combinational Logic Question 1: Due October 19 th, 2009 A convenient shorthand for specifying

### SUBJECT CODE: IT T35 DIGITAL SYSTEM DESIGN YEAR / SEM : 2 / 3

UNIT - I PART A (2 Marks) 1. Using Demorgan s theorem convert the following Boolean expression to an equivalent expression that has only OR and complement operations. Show the function can be implemented

### CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES

CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES This chapter in the book includes: Objectives Study Guide 9.1 Introduction 9.2 Multiplexers 9.3 Three-State Buffers 9.4 Decoders and Encoders

### ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Winter Notes - Unit 4. hundreds.

UNSIGNED INTEGER NUMBERS Notes - Unit 4 DECIMAL NUMBER SYSTEM A decimal digit can take values from to 9: Digit-by-digit representation of a positive integer number (powers of ): DIGIT 3 4 5 6 7 8 9 Number:

### CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN Lecture Notes

CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN Lecture Notes 1.1 Introduction: UNIT I BOOLEAN ALGEBRA AND LOGIC GATES Like normal algebra, Boolean algebra uses alphabetical letters to denote variables. Unlike

### DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 1 DLD P VIDYA SAGAR

UNIT I Digital Systems: Binary Numbers, Octal, Hexa Decimal and other base numbers, Number base conversions, complements, signed binary numbers, Floating point number representation, binary codes, error

1 Module -10 Encoder Table of Contents 1. Introduction 2. Code converters 3. Basics of Encoder 3.1 Linear encoders 3.1.1 Octal to binary encoder 3.1.2 Decimal to BCD encoder 3.1.3 Hexadecimal to binary

### UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents Memory: Introduction, Random-Access memory, Memory decoding, ROM, Programmable Logic Array, Programmable Array Logic, Sequential programmable

### (+A) + ( B) + (A B) (B A) + (A B) ( A) + (+ B) (A B) + (B A) + (A B) (+ A) (+ B) + (A - B) (B A) + (A B) ( A) ( B) (A B) + (B A) + (A B)

COMPUTER ARITHMETIC 1. Addition and Subtraction of Unsigned Numbers The direct method of subtraction taught in elementary schools uses the borrowconcept. In this method we borrow a 1 from a higher significant

### IT 201 Digital System Design Module II Notes

IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

### CS/COE 0447 Example Problems for Exam 2 Spring 2011

CS/COE 0447 Example Problems for Exam 2 Spring 2011 1) Show the steps to multiply the 4-bit numbers 3 and 5 with the fast shift-add multipler. Use the table below. List the multiplicand (M) and product

### Chapter 4 Arithmetic

Computer Eng 1 (ECE290) Chapter 4 Arithmetic Functions and Circuits HOANG Trang Reference: 2008 Pearson Education, Inc. Lecture note of Prof.Donna J.Brown Overview Binary adders Half and full adders Ripple

### IA Digital Electronics - Supervision I

IA Digital Electronics - Supervision I Nandor Licker Due noon two days before the supervision 1 Overview The goal of this exercise is to design an 8-digit calculator capable of adding

### *Instruction Matters: Purdue Academic Course Transformation. Introduction to Digital System Design. Module 4 Arithmetic and Computer Logic Circuits

Purdue IM:PACT* Fall 2018 Edition *Instruction Matters: Purdue Academic Course Transformation Introduction to Digital System Design Module 4 Arithmetic and Computer Logic Circuits Glossary of Common Terms

### KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT COE 202: Digital Logic Design Term 162 (Spring 2017) Instructor: Dr. Abdulaziz Barnawi Class time: U.T.R.: 11:00-11:50AM Class

### CONTENTS CHAPTER 1: NUMBER SYSTEM. Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii)

CONTENTS Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii) CHAPTER 1: NUMBER SYSTEM 1.1 Digital Electronics... 1 1.1.1 Introduction... 1 1.1.2 Advantages of Digital Systems...

### ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-278: Digital Logic Design Fall Notes - Unit 4. hundreds.

ECE-78: Digital Logic Design Fall 6 UNSIGNED INTEGER NUMBERS Notes - Unit 4 DECIMAL NUMBER SYSTEM A decimal digit can take values from to 9: Digit-by-digit representation of a positive integer number (powers

### 2. BOOLEAN ALGEBRA 2.1 INTRODUCTION

2. BOOLEAN ALGEBRA 2.1 INTRODUCTION In the previous chapter, we introduced binary numbers and binary arithmetic. As you saw in binary arithmetic and in the handling of floating-point numbers, there is

### Principles of Computer Architecture. Chapter 3: Arithmetic

3-1 Chapter 3 - Arithmetic Principles of Computer Architecture Miles Murdocca and Vincent Heuring Chapter 3: Arithmetic 3-2 Chapter 3 - Arithmetic 3.1 Overview Chapter Contents 3.2 Fixed Point Addition

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems

### DIGITAL ELECTRONICS. Vayu Education of India

DIGITAL ELECTRONICS ARUN RANA Assistant Professor Department of Electronics & Communication Engineering Doon Valley Institute of Engineering & Technology Karnal, Haryana (An ISO 9001:2008 ) Vayu Education

### 3. The high voltage level of a digital signal in positive logic is : a) 1 b) 0 c) either 1 or 0

1. The number of level in a digital signal is: a) one b) two c) four d) ten 2. A pure sine wave is : a) a digital signal b) analog signal c) can be digital or analog signal d) neither digital nor analog

### Chapter 1 Review of Number Systems

1.1 Introduction Chapter 1 Review of Number Systems Before the inception of digital computers, the only number system that was in common use is the decimal number system which has a total of 10 digits

### ECE468 Computer Organization & Architecture. The Design Process & ALU Design

ECE6 Computer Organization & Architecture The Design Process & Design The Design Process "To Design Is To Represent" Design activity yields description/representation of an object -- Traditional craftsman

### DIGITAL SYSTEM DESIGN

DIGITAL SYSTEM DESIGN UNIT I: Introduction to Number Systems and Boolean Algebra Digital and Analog Basic Concepts, Some history of Digital Systems-Introduction to number systems, Binary numbers, Number

### Digital Circuit Design and Language. Datapath Design. Chang, Ik Joon Kyunghee University

Digital Circuit Design and Language Datapath Design Chang, Ik Joon Kyunghee University Typical Synchronous Design + Control Section : Finite State Machine + Data Section: Adder, Multiplier, Shift Register

### Chapter 3 Part 2 Combinational Logic Design

University of Wisconsin - Madison EE/omp ci 352 Digital ystems Fundamentals Kewal K. aluja and u Hen Hu pring 2002 hapter 3 Part 2 ombinational Logic Design Originals by: harles R. Kime and Tom Kamisnski

### INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Name : DIGITAL LOGIC DESISN Code : AEC020 Class : B Tech III Semester

### Area Efficient, Low Power Array Multiplier for Signed and Unsigned Number. Chapter 3

Area Efficient, Low Power Array Multiplier for Signed and Unsigned Number Chapter 3 Area Efficient, Low Power Array Multiplier for Signed and Unsigned Number Chapter 3 3.1 Introduction The various sections

### Date Performed: Marks Obtained: /10. Group Members (ID):. Experiment # 09 MULTIPLEXERS

Name: Instructor: Engr. Date Performed: Marks Obtained: /10 Group Members (ID):. Checked By: Date: Experiment # 09 MULTIPLEXERS OBJECTIVES: To experimentally verify the proper operation of a multiplexer.