DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 3 DLD P VIDYA SAGAR


 Nora Rose
 2 years ago
 Views:
Transcription
1 DLD UNIT III Combinational Circuits (CC), Analysis procedure, Design Procedure, Combinational circuit for different code converters and other problems, Binary Adder Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers, Demultiplexer. VIDYA SAGAR P
2 Logic circuits may be combinational or sequential. Combinational circuits: consist of logic gates whose outputs at any time are determined from only the present combination of inputs. Combinational circuits have their operation specified logically by a set of Boolean functions. Sequential circuits: contain storage elements in addition to logic gates and have their outputs being a function of the inputs and the state of the storage elements which is a function of previous inputs. Sequential circuits have their outputs depending not only on present values of inputs, but also on past inputs, and the circuit behavior must be specified by a time sequence of inputs and internal states. A combinational circuit consists of an interconnection of logic gates. Combinational circuits react to the values at their inputs and produce the value of the output signal, transforming binary information from the given input data to a required output data. A block diagram of a combinational circuit is shown below. The n inputs come from an external source; the m outputs are produced by the combinational circuit and go to an external destination. Each input and output is actually an analog electrical signal whose values are interpreted to be a binary signal that represents logic 1 and logic 0. ANALYSIS PROCEDURE: The analysis of a combinational circuit requires that we determine the function that the circuit implements. This task starts with a given logic diagram and culminates with a set of Boolean functions, a truth table, or, possibly, an explanation of the circuit operation. If the logic diagram to be analyzed is accompanied by a function name or an explanation of what it is assumed to accomplish, then the analysis problem reduces to a verification of the stated function. The analysis can be performed manually by finding the Boolean functions or truth table or by using a computer simulation program. The first step in the analysis is to make sure that the given circuit is combinational and not sequential. The diagram of a combinational circuit has logic gates with no feedback paths or memory elements. A feedback path is a connection from the output of one gate to the input of a second gate whose output forms part of the input to the first gate. Feedback paths in a digital circuit define a sequential circuit and must be analyzed by special methods and will not be considered here. Once the logic diagram is verified to be that of a combinational circuit, one can proceed to obtain the output Boolean functions or the truth table. If the function of the circuit is under investigation, then it is necessary to interpret the operation of the circuit from the derived Boolean functions or truth table. The success of such an investigation is enhanced if one has previous experience and familiarity with a wide variety of digital circuits.
3 To obtain the output Boolean functions from a logic diagram, we proceed as follows: 1. Label all gate outputs that are a function of input variables with arbitrary symbols but with meaningful names. Determine the Boolean functions for each gate output. 2. Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates. 3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained. 4. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables. The analysis of the combinational circuit of Fig. 4.2 illustrates the proposed procedure. We note that the circuit has three binary inputs A, B, and C and two binary outputs F1 and F2. The outputs of various gates are labeled with intermediate symbols. The outputs of gates that are a function only of input variables are T1 and T2. Output F2 can easily be derived from the input variables. The Boolean functions for these three outputs are F2 = AB + AC + BC T1 = A + B + C T2 = ABC Next, we consider outputs of gates that are a function of already defined symbols: T3 = F 2T1; F1 = T3 + T2 To obtain F1 as a function of A, B, and C, we form a series of substitutions as follows:
4 The derivation of the truth table for a circuit is a straightforward process once the output Boolean functions are known. To obtain the truth table directly from the logic diagram without going through the derivations of the Boolean functions, we proceed as follows: 1. Determine the number of input variables in the circuit. For n inputs, form the 2n possible input combinations and list the binary numbers from 0 to (2n  1) in a table. 2. Label the outputs of selected gates with arbitrary symbols. 3. Obtain the truth table for the outputs of those gates which are a function of the input variables only. 4. Proceed to obtain the truth table for the outputs of those gates which are a function of previously defined values until the columns for all outputs are determined. This process is illustrated with the circuit of Fig In Table 4.1, we form the eight possible combinations for the three input variables. The truth table for F2 is determined directly from the values of A, B, and C, with F2 equal to 1 for any combination that has two or three inputs equal to 1. The truth table for F_2 is the complement of F2. The truth tables for T1 and T2 are the OR and AND functions of the input variables, respectively. The values for T3 are derived from T1 and F_2:T3 is equal to 1 when both T1 and F_2 are equal to 1, and T3 is equal to 0 otherwise. Finally, F1 is equal to 1 for those combinations in which either T2 or T3 or both are equal to 1. Inspection of the truth table combinations for A, B, C, F1, and F2 shows that it is identical to the truth table of the full adder given in Section 4.5 for x, y, z, S, and C, respectively. DESIGN PROCEDURE: The design of combinational circuits starts from the specification of the design objective and culminates in a logic circuit diagram or a set of Boolean functions from which the logic diagram can be obtained. The procedure involves the following steps: 1. From the specifications of the circuit, determine the required number of inputs and outputs and assign a symbol to each. 2. Derive the truth table that defines the required relationship between inputs and outputs. 3. Obtain the simplified Boolean functions for each output as a function of the input variables. 4. Draw the logic diagram and verify the correctness of the design (manually or by simulation).
5 A truth table for a combinational circuit consists of input columns and output columns. The input columns are obtained from the 2n binary numbers for the n input variables. The binary values for the outputs are determined from the stated specifications. The output functions specified in the truth table give the exact definition of the combinational circuit. It is important that the verbal specifications be interpreted correctly in the truth table, as they are often incomplete, and any wrong interpretation may result in an incorrect truth table. Code Conversion Example: To convert from binary code A to binary code B, the input lines must supply the bit combination of elements as specified by code A and the output lines must generate the corresponding bit combination of code B. A combinational circuit performs this transformation by means of logic gates. The design procedure will be illustrated by an example that converts binary coded decimal (BCD) to the excess3 code for the decimal digits. Since each code uses four bits to represent a decimal digit, there must be four input variables and four output variables. We designate the four input binary variables by the symbols A, B, C, and D, and the four output variables by w, x, y, and z. The truth table relating the input and output variables is shown in Table 4.2. The bit combinations for the inputs and their corresponding outputs are obtained directly from Section 1.7. Note that four binary variables may have 16 bit combinations, but only 10 are listed in the truth table. The six bit combinations not listed for the input variables are don tcare combinations. These values have no meaning in BCD and we assume that they will never occur in actual operation of the circuit. Therefore, we are at liberty to assign to the output variables either a 1 or a 0, whichever gives a simpler circuit. The maps in Fig. 4.3 are plotted to obtain simplified Boolean functions for the outputs. Each one of the four maps represents one of the four outputs of the circuit as a function of the four input variables. The 1 s marked inside the squares are obtained from the minterms that make the output equal to 1. The 1 s are obtained from the truth table by going over the output columns one at a time. For example, the column under output z has five 1 s; therefore, the map for z has five 1 s, each being in a square corresponding to the minterm that makes z equal to 1. The six don tcare minterms 10 through 15 are marked with an X. One possible way to simplify the functions into sumofproducts form is listed under the map of each variable. A twolevel logic diagram for each output may be obtained directly from the Boolean expressions derived from the maps. There are various other possibilities for a logic diagram that implements this circuit. The expressions obtained in Fig. 4.3 may be manipulated algebraically for the purpose of using common gates for two or more outputs. This manipulation, shown next, illustrates the flexibility obtained with multipleoutput systems when implemented with three or more levels of gates:
6 The logic diagram that implements these expressions is shown in Fig Note that the OR gate whose output is C + D has been used to implement partially each of three outputs. Not counting input inverters, the implementation in sumofproducts form requires seven AND gates and three OR gates. The implementation of Fig. 4.4 requires four AND gates, four OR gates, and one inverter. If only the normal inputs are available, the first implementation will require inverters for variables B, C, and D, and the second implementation will require inverters for variables B and D. Thus, the threelevel logic circuit requires fewer gates, all of which in turn require no more than two inputs.
7 Adders In electronics, an adder or summer is a digital circuit that performs addition of numbers. In modern computers adders reside in the arithmetic logic unit (ALU) where other operations are performed. Although adders can be constructed for many numerical representations, such as Binarycoded decimal or excess3, the most common adders operate on binary numbers. In cases where twos complement or ones complement is being used to represent negative numbers, it is trivial to modify an adder into an addersubtracter. Other signed number representations require a more complex adder. Half Adder A half adder is a logical circuit that performs an addition operation on two binary digits. The half adder produces a sum and a carry value which are both binary digits. A half adder has two inputs, generally labelled A and B, and two outputs, the sum S and carry C. S is the twobit XOR of A and B, and C is the AND of A and B. Essentially the output of a half adder is the sum of two onebit numbers, with C being the most significant of these two outputs. The drawback of this circuit is that in case of a multibit addition, it cannot include a carry. Equation of the Sum and Carry. Sum=A B+AB ; Carry=AB; = 0; = 1; = 1; = 10; One can see that Sum can also be implemented using XOR gate as A B Following is the truth table for a half adder:
8 A B Carry Sum sum of products ExclusiveOR and AND Full Adder: A full adder has three inputs X, Y, and a carry in Z, such that multiple adders can be used to add larger numbers. To remove ambiguity between the input and output carry lines, the carry in is labelled C i or C in while the carry out is labelled C o or C out. A full adder is a logical circuit that performs an addition operation on three binary digits. The full adder produces a sum and carry value, which are both binary digits. It can be combined with other full adders or work on its own.
9 A full adder can be trivially built using our ordinary design methods for combinatorial circuits. Here is the resulting circuit diagram using NAND gates only: C o=a BC i+ab C i+abc i +ABC i by manipulating C o, we can see thatc o= C i(a +A BC i +ABC i +ABC i By manipulating S, we can see that S=C i (A B) B)+AB; S=A B C i A full adder can be constructed from two half adders by connecting A and B to the input of one half adder, connecting the sum from that to an input to the second adder, connecting Ci to the other input and OR the two carry outputs. Equivalently, S could be made the threebit xor of A, B, and Ci and Co could be made the threebit majority function of A, B, and Ci. The output of the full adder is the twobit arithmetic sum of three onebit numbers.
10 Binary Adder : A binary adder can be constructed with full adders connected in cascade, with the output carry from each full adder connected to the input carry of the next full adder in the chain (called ripplecarry adder). Example: 4bit binary adder Ripple carry adder The layout of ripple carry adder is simple, which allows for fast design time; however, the ripple carry adder is relatively slow, since each full adder must wait for the carry bit to be calculated from the previous full adder. The gate delay can easily be calculated by inspection of the full adder circuit. Following the path from C in to C out shows 2 gates that must be passed through. Therefore, a 32bit adder requires 31 carry computations and the final sum calculation for a total of 31 * = 63 gate delays. Carry Lookahead Adder The carry propagation delay can be reduced using lookahead carry (more complex mechanism, yet faster) Two signals defined: The carry signals of the adder become C3 does not have to wait for C2 and C1 to propagate; in fact, C3 is propagated at the same time as C1 and C2. It means that all the Ci s depend on Pi, Gi, and C0 directly. Carry Lookahead Generator:
11
12 Subtractor : In electronics, a subtractor can be designed using the same approach as that of an adder. The binary subtraction process is summarized below. As with an adder, in the general case of calculations on multibit numbers, three bits are involved in performing the subtraction for each bit: the minuend (Xi), subtrahend (Yi), and a borrow in from the previous (less significant) bit order position (Bi). The outputs are the difference bit (Di) and borrow bit Bi + 1. Half subtractor : The halfsubtractor is a combinational circuit which is used to perform subtraction of two bits. It has two inputs, X (minuend) and Y (subtrahend) and two outputs D (difference) and B (borrow). Such a circuit is called a half subtractor because it enables a borrow out of the current arithmetic operation but no borrow in from a previous arithmetic operation. The truth table for the half subtractor is given below. D=X Y+XY or D= X Y; B=X Y X Y D B Full Subtractor As in the case of the addition using logic gates, a full subtractor is made by combining two halfsubtractors and an additional ORgate. A full subtractor has the borrow in capability (denoted as BORIN in the diagram below) and so allows cascading which results in the possibility of multibit subtraction. The final truth table for a full subtractor looks like;the circuit diagram for a full subtractor is given below. A B BOR IN D BOR OUT
13 NBit Parallel Subtractor: The subtraction can be carried out by taking the 1's or 2's complement of the number to be subtracted. For example we can perform the subtraction (AB) by adding either 1's or 2's complement of B to A. That means we can use a binary adder to perform the binary subtraction. 4 Bit Parallel Subtractor The number to be subtracted (B) is first passed through inverters to obtain its 1's complement. The 4bit adder then adds A and 2's complement of B to produce the subtraction. S 3 S 2 S 1 S 0 represents the result of binary subtraction (AB) and carry output C out represents the polarity of the result. If A > B then Cout = 0 and the result of binary form (AB) then C out = 1 and the result is in the 2's complement form. Block diagram
14 Binary AdderSubtractor : Our binary adder can already handle negative numbers as indicated in the section on binary arithmetic But we have not discussed how we can get it to handle subtraction. To see how this can be done, notice that in order to compute the expression x  y, we can compute the expression x + y instead. We know from the section on binary arithmetic how to negate a number by inverting all the bits and adding 1. Thus, we can compute the expression as x + inv(y) + 1. It suffices to invert all the inputs of the second operand before they reach the adder, but how do we add the 1. That seems to require another adder just for that. Luckily, we have an unused carryin signal to position 0 that we can use. Giving a 1 on this input in effect adds one to the result. The complete circuit with addition and subtraction looks like this: A  B = A + (2 s complement of B) 4bit addersubtractor M = 0 A + B; M = 1 A + B + 1 Output V is for detecting an overflow.
15 Decimal Adder: Add two BCD's 9 inputs: two BCD's and one carryin 5 outputs: one BCD and one carryout Design approaches A truth table with 29 entries use binary full Adders» the decimal sum must be not larger than 19 (= )» the BCD sum is no larger than 9; (S8S4S2S1) (1001) The Sum of a BCD Adder :
16 BCD Adjustment When the binary sum is equal to or less than 1001, the corresponding BCD number is identical, no conversion is needed. When the binary sum is greater than 1001, an addition of 6 (0110) converts it to the correct BCD representation and also produces an output carry as required. Modifications are needed if the sum > 9 (1001) C must be set to 1, if When C = 1, add 0110 to the binary sum.
17 Binary Multiplier Performed in the same way as multiplication of decimal numbers. Partial products: AND operations. 2bit 2bit 4bit (n n 2n bits) For J multiplier and K multiplicand bits, we need (J K) AND gates and (J  1) Kbit adders to produce a product of (J + K) bits. K = 4 and J = 3: 12 AND gates and two 4bit adders: produce a 7bit product.
18 General Form: Array Multiplier :
19 Magnitude Comparator A magnitude comparator compares two numbers A and B and determines their relative magnitudes. The results of comparison between two numbers are: A > B, A = B, A < B Design Approaches: The truth table for two nbit numbers comparison» 2 2n entries  too cumbersome for large n use inherent regularity of the problem (algorithm approach);algorithm a procedure which specifies a finite set of steps, reduce design efforts; reduce human errors. Consider two 4bit numbers, A = A3A2A1A0, B = B3B2B1B0 o A and B are equal (A = B) if A3 = B3, A2 = B2, A1 = B1, and A0 = B0. o The equality of each pair of bits can be expressed with an exclusivenor function as: o xi = AiBi + Ai Bi for i = 0, 1, 2, 3; xi = (Ai Bi + AiBi ) ;xi = 1 only if the pair of bits in position i are equal (both are 1 or both are 0).For equality to exist (A = B), all xi variables must be equal to 1: (A = B) = x3x2x1x0;to determine whether (A > B) or (A < B), starting from the MSB, if the two bits are equal, then compare the next lower significant pair of bits until a pair of unequal bits is reached. o If the corresponding bit of A is 1 and that of B is 0, we conclude that A > B. o If the corresponding digit of A is 0 and that of B is 1, we have A < B. o The sequential comparison can be expressed by the two Boolean functions (A > B) = A3B3 + x3a2b2 + x3x2a1b1 + x3x2x1a0b0 (A < B) = A3 B3 + x3a2 B2 + x3x2a1 B1 + x3x2x1a0 B0
20 Decoders: A decoder converts binary information from n input lines to a maximum of 2n unique output lines. A ntom decoder (m 2n); a binary code of n bits has 2n distinct information with n input variables; up to 2n output lines only one output can be active (high) at any time. Twotofour Decoder with Enable: Enable input is added to control the circuit operation.
21 Decoder Expansion: 3 to 8 Decoder: We know that 2 to 4 Decoder has two inputs, A1 & A0 and four outputs, Y3 to Y0. Whereas, 3 to 8 Decoder has three inputs A2, A1 & A0 and eight outputs, Y7 to Y0. We can find the number of lower order decoders required for implementing higher order decoder using the following formula. Required number of lower order decoders=m2/m1 Where, m1 is the number of outputs of lower order decoder. m2 is the number of outputs of higher order decoder. Here, m1= 4 and m2= 8. Substitute, these two values in the above formula. Required number of 2to4 decoders =8/4=2 Therefore, we require two 2 to 4 decoders for implementing one 3 to 8 decoder. The block diagram of 3 to 8 decoder using 2 to 4 decoders is shown in the following figure. The parallel inputs A1 & A0 are applied to each 2 to 4 decoder. The complement of input A2 is connected to Enable, E of lower 2 to 4 decoder in order to get the outputs, Y3 to Y0. These are the lower four min terms. The input, A2 is directly connected to Enable, E of upper 2 to 4 decoder in order to get the outputs, Y7 to Y4. These are the higher four min terms.
22 Expand two 3to8 decoder with Enable to a 4to16 decoder Universal Combinational Logic Implementation : A decoder provides the 2n minterms of n input variables. A decoder and an external OR gate can implement any Boolean function of n input variables in sumofminterm form. For example, a fulladder has its sum S(x,y,z) = (1,2,4,7) and carry C(x,y,z) = (3,5,6,7). Encoders: The inverse function of a decoder and has 2n (or fewer) input lines and n output lines. The output lines generate the binary code corresponding to the input value. Example:
23 Priority Encoder: Encoder that includes the priority function; Resolve the ambiguity of illegal inputs, only one of the input is encoded, the input having the highest priority will take precedence. Example: D3 has the highest priority» D0 has the lowest priority» X: don'tcare conditions» V: valid output indicator x = D2 + D3 y = D3 + D1 D2 V = D0 + D1 + D2 + D3 Multiplexers: Select from one of many inputs and passes it to a single output, controlled by a set of selection lines. A multiplexer is also called a data selector. Normally, there are 2n inputs and n selection lines whose bit combinations determine which input is selected. Example: (twotoone multiplexer)
24 Quadruple 2to1 Multiplexer: Implementation of Higherorder Multiplexers. Now, let us implement the following two higherorder Multiplexers using lowerorder Multiplexers. 8x1 Multiplexer 16x1 Multiplexer 8x1 Multiplexer In this section, let us implement 8x1 Multiplexer using 4x1 Multiplexers and 2x1 Multiplexer. We know that 4x1 Multiplexer has 4 data inputs, 2 selection lines and one output. Whereas, 8x1 Multiplexer has 8 data inputs, 3 selection lines and one output.
25 So, we require two 4x1 Multiplexers in first stage in order to get the 8 data inputs. Since, each 4x1 Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by considering the outputs of first stage as inputs and to produce the final output. Let the 8x1 Multiplexer has eight data inputs I7 to I0, three selection lines s2, s1 & s0 and one output Y. The Truth table of 8x1 Multiplexer is shown below. Selection Inputs Output S2 S1 S0 Y I I I I I I I I7 We can implement 8x1 Multiplexer using lower order Multiplexers easily by considering the above Truth table. The block diagram of 8x1 Multiplexer is shown in the following figure. The same selection lines, s1 & s0 are applied to both 4x1 Multiplexers. The data inputs of upper 4x1 Multiplexer are I7 to I4 and the data inputs of lower 4x1 Multiplexer are I3 to I0. Therefore, each 4x1 Multiplexer produces an output based on the values of selection lines, s1 & s0.
26 The outputs of first stage 4x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is present in second stage. The other selection line, s2 is applied to 2x1 Multiplexer. If s2 is zero, then the output of 2x1 Multiplexer will be one of the 4 inputs I3 to I0 based on the values of selection lines s1 & s0. If s2 is one, then the output of 2x1 Multiplexer will be one of the 4 inputs I7 to I4 based on the values of selection lines s1 & s0. Therefore, the overall combination of two 4x1 Multiplexers and one 2x1 Multiplexer performs as one 8x1 Multiplexer. 16x1 Multiplexer In this section, let us implement 16x1 Multiplexer using 8x1 Multiplexers and 2x1 Multiplexer. We know that 8x1 Multiplexer has 8 data inputs, 3 selection lines and one output. Whereas, 16x1 Multiplexer has 16 data inputs, 4 selection lines and one output. So, we require two 8x1 Multiplexers in first stage in order to get the 16 data inputs. Since, each 8x1 Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by considering the outputs of first stage as inputs and to produce the final output. Let the 16x1 Multiplexer has sixteen data inputs I15 to I0, four selection lines s3 to s0 and one output Y. The Truth table of 16x1 Multiplexer is shown below. Selection Inputs Output S3 S2 S1 S0 Y I I I I I I I I I I I I I I I I15
27 We can implement 16x1 Multiplexer using lower order Multiplexers easily by considering the above Truth table. The block diagram of 16x1 Multiplexer is shown in the following figure. The same selection lines, s2, s1 & s0 are applied to both 8x1 Multiplexers. The data inputs of upper 8x1 Multiplexer are I15 to I8 and the data inputs of lower 8x1 Multiplexer are I7 to I0. Therefore, each 8x1 Multiplexer produces an output based on the values of selection lines, s2, s1 & s0. The outputs of first stage 8x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is present in second stage. The other selection line, s3 is applied to 2x1 Multiplexer. If s3 is zero, then the output of 2x1 Multiplexer will be one of the 8 inputs Is7 to I0 based on the values of selection lines s2, s1 & s0. If s3 is one, then the output of 2x1 Multiplexer will be one of the 8 inputs I15 to I8 based on the values of selection lines s2, s1 & s0. Therefore, the overall combination of two 8x1 Multiplexers and one 2x1 Multiplexer performs as one 16x1 Multiplexer. Boolean Function Implementation: MUX has a structure composed of a decoder and an OR gate 2nto1 MUX can implement any Boolean function of n+1 input variables.n of these input variables are used as the selection lines. The remaining single variable is used for the data inputs. If the single variable is denoted by z, each data input of the multiplexer will be z, z, 1, or 0.
28 Demultiplexer: A demultiplexer performs the reverse operation of a multiplexer i.e. it receives one input and distributes it over several outputs. It has only one input, n outputs, m select input. At a time only one output line is selected by the select lines and the input is transmitted to the selected output line. A demultiplexer is equivalent to a single pole multiple way switch as shown in fig. Demultiplexers come in multiple variations. 1 : 2 demultiplexer 1 : 4 demultiplexer 1 : 16 demultiplexer 1 : 32 demultiplexer 1x4 DeMultiplexer : 1x4 DeMultiplexer has one input I, two selection lines, s 1 & s 0 and four outputs Y 3, Y 2, Y 1 &Y 0. The block diagram of 1x4 DeMultiplexer is shown in the following figure. The single input I will be connected to one of the four outputs, Y 3 to Y 0 based on the values of selection lines s 1 & s0. The Truth table of 1x4 DeMultiplexer is shown below. Selection Inputs Outputs S 1 S 0 Y 3 Y 2 Y 1 Y I I I I From the above Truth table, we can directly write the Boolean functions for each output as Y 3=S 1 S 0 Y 2= S 1 S 0 Y 1= S 1 S 0 Y 0= S 1 S 0
29 We can implement these Boolean functions using Inverters & 3input AND gates. The circuit diagram of 1x4 DeMultiplexer is shown in the following figure. We can easily understand the operation of the above circuit. Similarly, you can implement 1x8 DeMultiplexer and 1x16 DeMultiplexer by following the same procedure. 1x4 DeMultiplexer WITH Enable : Block diagram Truth Table: Implementation of Higherorder DeMultiplexers Now, let us implement the following two higherorder DeMultiplexers using lowerorder De Multiplexers. 1x8 DeMultiplexer 1x16 DeMultiplexer 1x8 DeMultiplexer In this section, let us implement 1x8 DeMultiplexer using 1x4 DeMultiplexers and 1x2 De Multiplexer. We know that 1x4 DeMultiplexer has single input, two selection lines and four outputs. Whereas, 1x8 DeMultiplexer has single input, three selection lines and eight outputs. So, we require two 1x4 DeMultiplexers in second stage in order to get the final eight outputs. Since, the number of inputs in second stage is two, we require 1x2 DeMultiplexer in first
30 stage so that the outputs of first stage will be the inputs of second stage. Input of this 1x2 De Multiplexer will be the overall input of 1x8 DeMultiplexer. Let the 1x8 DeMultiplexer has one input I, three selection lines s 2, s 1 & s 0 and outputs Y 7 to Y 0. The Truth table of 1x8 DeMultiplexer is shown below. Selection Inputs Outputs s 2 s 1 s 0 Y 7 Y 6 Y 5 Y 4 Y 3 Y 2 Y 1 Y I I I I I I I I We can implement 1x8 DeMultiplexer using lower order Multiplexers easily by considering the above Truth table. The block diagram of 1x8 DeMultiplexer is shown in the following figure. The common selection lines, s 1 & s 0 are applied to both 1x4 DeMultiplexers. The outputs of upper 1x4 DeMultiplexer are Y 7 to Y 4 and the outputs of lower 1x4 DeMultiplexer are Y 3 to Y 0. The other selection line, s 2 is applied to 1x2 DeMultiplexer. If s 2 is zero, then one of the four outputs of lower 1x4 DeMultiplexer will be equal to input, I based on the values of selection lines s 1 & s 0. Similarly, if s 2 is one, then one of the four outputs of upper 1x4 DeMultiplexer will be equal to input, I based on the values of selection lines s 1 & s 0.
31 1x16 DeMultiplexer In this section, let us implement 1x16 DeMultiplexer using 1x8 DeMultiplexers and 1x2 De Multiplexer. We know that 1x8 DeMultiplexer has single input, three selection lines and eight outputs. Whereas, 1x16 DeMultiplexer has single input, four selection lines and sixteen outputs. So, we require two 1x8 DeMultiplexers in second stage in order to get the final sixteen outputs. Since, the number of inputs in second stage is two, we require 1x2 DeMultiplexer in first stage so that the outputs of first stage will be the inputs of second stage. Input of this 1x2 DeMultiplexer will be the overall input of 1x16 DeMultiplexer. Let the 1x16 DeMultiplexer has one input I, four selection lines s 3, s 2, s 1 & s 0 and outputs Y 15 to Y 0. The block diagram of 1x16 DeMultiplexer using lower order Multiplexers is shown in the following figure. The common selection lines s 2, s 1 & s 0 are applied to both 1x8 DeMultiplexers. The outputs of upper 1x8 DeMultiplexer are Y 15 to Y 8 and the outputs of lower 1x8 DeMultiplexer are Y 7 to Y 0. The other selection line, s 3 is applied to 1x2 DeMultiplexer. If s 3 is zero, then one of the eight outputs of lower 1x8 DeMultiplexer will be equal to input, I based on the values of selection lines s 2, s 1 & s 0. Similarly, if s3 is one, then one of the 8 outputs of upper 1x8 DeMultiplexer will be equal to input, I based on the values of selection lines s 2, s 1 & s 0.
32 Applications of Demultiplexer: 1. Demultiplexer is used to connect a single source to multiple destinations. The main application area of demultiplexer is communication system where multiplexer are used. Most of the communication system are bidirectional i.e. they function in both ways (transmitting and receiving signals). Hence, for most of the applications, the multiplexer and demultiplexer work in sync. Demultiplexer are also used for reconstruction of parallel data and ALU circuits. 2. Communication System Communication system use multiplexer to carry multiple data like audio, video and other form of data using a single line for transmission. This process make the transmission easier. The demultiplexer receive the output signals of the multiplexer and converts them back to the original form of the data at the receiving end. The multiplexer and demultiplexer work together to carry out the process of transmission and reception of data in communication system. 3. ALU (Arithmetic Logic Unit) In an ALU circuit, the output of ALU can be stored in multiple registers or storage units with the help of demultiplexer. The output of ALU is fed as the data input to the demultiplexer. Each output of demultiplexer is connected to multiple register which can be stored in the registers. 4. Serial to parallel converter A serial to parallel converter is used for reconstructing parallel data from incoming serial data stream. In this technique, serial data from the incoming serial data stream is given as data input to the demultiplexer at the regular intervals. A counter is attach to the control input of the demultiplexer. This counter directs the data signal to the output of the demultiplexer where these data signals are stored. When all data signals have been stored, the output of the demultiplexer can be retrieved and read out in parallel.
33
Chapter 4. Combinational Logic
Chapter 4. Combinational Logic Tong In Oh 1 4.1 Introduction Combinational logic: Logic gates Output determined from only the present combination of inputs Specified by a set of Boolean functions Sequential
More informationNH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNITII COMBINATIONAL CIRCUITS
NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF ELETRONICS AND COMMUNICATION ENGINEERING COURSE NOTES SUBJECT: DIGITAL ELECTRONICS CLASS: II YEAR ECE SUBJECT CODE: EC2203
More informationCombinational Circuits
Combinational Circuits Combinational circuit consists of an interconnection of logic gates They react to their inputs and produce their outputs by transforming binary information n input binary variables
More informationCOMBINATIONAL LOGIC CIRCUITS
COMBINATIONAL LOGIC CIRCUITS 4.1 INTRODUCTION The digital system consists of two types of circuits, namely: (i) Combinational circuits and (ii) Sequential circuits A combinational circuit consists of logic
More informationChap.3 3. Chap reduces the complexity required to represent the schematic diagram of a circuit Library
3.1 Combinational Circuits 2 Chap 3. logic circuits for digital systems: combinational vs sequential Combinational Logic Design Combinational Circuit (Chap 3) outputs are determined by the present applied
More informationEE 8351 Digital Logic Circuits Ms.J.Jayaudhaya, ASP/EEE
EE 8351 Digital Logic Circuits Ms.J.Jayaudhaya, ASP/EEE 1 Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables, logic gates, and output
More informationCombinational Logic. Prof. Wangrok Oh. Dept. of Information Communications Eng. Chungnam National University. Prof. Wangrok Oh(CNU) 1 / 93
Combinational Logic Prof. Wangrok Oh Dept. of Information Communications Eng. Chungnam National University Prof. Wangrok Oh(CNU) / 93 Overview Introduction 2 Combinational Circuits 3 Analysis Procedure
More informationUNIT II  COMBINATIONAL LOGIC Part A 2 Marks. 1. Define Combinational circuit A combinational circuit consist of logic gates whose outputs at anytime are determined directly from the present combination
More informationCombinational Logic with MSI and LSI
1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010
More informationCombinational Logic Circuits
Combinational Logic Circuits By Dr. M. Hebaishy Digital Logic Design Ch Rem.!) Types of Logic Circuits Combinational Logic Memoryless Outputs determined by current values of inputs Sequential Logic Has
More information1. Mark the correct statement(s)
1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another
More informationDIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS
C H A P T E R 6 DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS OUTLINE 6 Binary Addition 62 Representing Signed Numbers 63 Addition in the 2 s Complement System 64 Subtraction in the 2 s Complement
More informationCO Computer Architecture and Programming Languages CAPL. Lecture 9
CO20320241 Computer Architecture and Programming Languages CAPL Lecture 9 Dr. Kinga Lipskoch Fall 2017 A Fourbit Number Circle CAPL Fall 2017 2 / 38 Functional Parts of an ALU CAPL Fall 2017 3 / 38 Addition
More informationNH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY CS 2202 DIGITAL PRINCIPLES AND SYSTEM DESIGN
NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF INFORMATION TECHNOLOGY CS 2202 DIGITAL PRINCIPLES AND SYSTEM DESIGN UNIT 2 COMBINATIONAL LOGIC Combinational circuits Analysis
More informationCombinational Logic II
Combinational Logic II Ranga Rodrigo July 26, 2009 1 Binary AdderSubtractor Digital computers perform variety of information processing tasks. Among the functions encountered are the various arithmetic
More informationComputer Logical Organization Tutorial
Computer Logical Organization Tutorial COMPUTER LOGICAL ORGANIZATION TUTORIAL Simply Easy Learning by tutorialspoint.com tutorialspoint.com i ABOUT THE TUTORIAL Computer Logical Organization Tutorial Computer
More informationGet Free notes at ModuleI One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)
More informationCombinational Logic Use the Boolean Algebra and the minimization techniques to design useful circuits No feedback, no memory Just n inputs, m outputs
Combinational Logic Use the Boolean Algebra and the minimization techniques to design useful circuits No feedback, no memory Just n inputs, m outputs and an arbitrary truth table Analysis Procedure We
More informationCOMPUTER ARCHITECTURE AND ORGANIZATION Register Transfer and Microoperations 1. Introduction A digital system is an interconnection of digital
Register Transfer and Microoperations 1. Introduction A digital system is an interconnection of digital hardware modules that accomplish a specific informationprocessing task. Digital systems vary in
More informationD I G I T A L C I R C U I T S E E
D I G I T A L C I R C U I T S E E Digital Circuits Basic Scope and Introduction This book covers theory solved examples and previous year gate question for following topics: Number system, Boolean algebra,
More informationUNIT V COMBINATIONAL LOGIC DESIGN
UNIT V COMBINATIONAL LOGIC DESIGN NOTE: This is UNITV in JNTUK and UNITIII and HALF PART OF UNITIV in JNTUA SYLLABUS (JNTUK)UNITV: Combinational Logic Design: Adders & Subtractors, Ripple Adder, Look
More informationLOGIC CIRCUITS. Kirti P_Didital Design 1
LOGIC CIRCUITS Kirti P_Didital Design 1 Introduction The digital system consists of two types of circuits, namely (i) Combinational circuits and (ii) Sequential circuit A combinational circuit consists
More informationThis tutorial gives a complete understanding on Computer Logical Organization starting from basic computer overview till its advanced architecture.
About the Tutorial Computer Logical Organization refers to the level of abstraction above the digital logic level, but below the operating system level. At this level, the major components are functional
More informationChapter Three. Digital Components
Chapter Three 3.1. Combinational Circuit A combinational circuit is a connected arrangement of logic gates with a set of inputs and outputs. The binary values of the outputs are a function of the binary
More informationDepartment of Electrical and Computer Engineering University of Wisconsin  Madison. ECE/CS 352 Digital System Fundamentals.
Department of Electrical and Computer Engineering University of Wisconsin  Madison ECE/C 352 Digital ystem Fundamentals Quiz #2 Thursday, March 7, 22, 7:158:3PM 1. (15 points) (a) (5 points) NAND, NOR
More informationWeek 7: Assignment Solutions
Week 7: Assignment Solutions 1. In 6bit 2 s complement representation, when we subtract the decimal number +6 from +3, the result (in binary) will be: a. 111101 b. 000011 c. 100011 d. 111110 Correct answer
More informationAddition and multiplication
Addition and multiplication Arithmetic is the most basic thing you can do with a computer, but it s not as easy as you might expect! These next few lectures focus on addition, subtraction, multiplication
More informationObjectives: 1. Design procedure. 2. Fundamental circuits. 1. Design procedure
Objectives: 1. Design procedure. 2. undamental circuits. 1. Design procedure Design procedure has five steps: o Specification. o ormulation. o Optimization. o Technology mapping. o Verification. Specification:
More informationR10. II B. Tech I Semester, Supplementary Examinations, May
SET  1 1. a) Convert the following decimal numbers into an equivalent binary numbers. i) 53.625 ii) 4097.188 iii) 167 iv) 0.4475 b) Add the following numbers using 2 s complement method. i) 48 and +31
More informationBinary Addition. Add the binary numbers and and show the equivalent decimal addition.
Binary Addition The rules for binary addition are 0 + 0 = 0 Sum = 0, carry = 0 0 + 1 = 0 Sum = 1, carry = 0 1 + 0 = 0 Sum = 1, carry = 0 1 + 1 = 10 Sum = 0, carry = 1 When an input carry = 1 due to a previous
More informationENDTERM EXAMINATION
(Please Write your Exam Roll No. immediately) ENDTERM EXAMINATION DECEMBER 2006 Exam. Roll No... Exam Series code: 100919DEC06200963 Paper Code: MCA103 Subject: Digital Electronics Time: 3 Hours Maximum
More informationVALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS YEAR / SEMESTER: II / III ACADEMIC YEAR: 20152016 (ODD
More information10EC33: DIGITAL ELECTRONICS QUESTION BANK
10EC33: DIGITAL ELECTRONICS Faculty: Dr.Bajarangbali E Examination QuestionS QUESTION BANK 1. Discuss canonical & standard forms of Boolean functions with an example. 2. Convert the following Boolean function
More informationChapter 3 Part 2 Combinational Logic Design
University of Wisconsin  Madison ECE/Comp Sci 352 Digital Systems Fundamentals Kewal K. Saluja and Yu Hen Hu Spring 2002 Chapter 3 Part 2 Combinational Logic Design Originals by: Charles R. Kime and Tom
More informationTHE LOGIC OF COMPOUND STATEMENTS
CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS Copyright Cengage Learning. All rights reserved. SECTION 2.5 Application: Number Systems and Circuits for Addition Copyright Cengage Learning. All rights reserved.
More informationB.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN
B.Tech II Year I Semester () Regular Examinations December 2014 (Common to IT and CSE) (a) If 1010 2 + 10 2 = X 10, then X is  Write the first 9 decimal digits in base 3. (c) What is meant by don
More informationChapter 3: part 3 Binary Subtraction
Chapter 3: part 3 Binary Subtraction Iterative combinational circuits Binary adders Half and full adders Ripple carry and carry lookahead adders Binary subtraction Binary addersubtractors Signed binary
More informationArithmetic Circuits. Nurul Hazlina Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit
Nurul Hazlina 1 1. Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit Nurul Hazlina 2 Introduction 1. Digital circuits are frequently used for arithmetic operations 2. Fundamental
More informationInjntu.com Injntu.com Injntu.com R16
1. a) What are the three methods of obtaining the 2 s complement of a given binary (3M) number? b) What do you mean by Kmap? Name it advantages and disadvantages. (3M) c) Distinguish between a halfadder
More informationComputer Architecture Set Four. Arithmetic
Computer Architecture Set Four Arithmetic Arithmetic Where we ve been: Performance (seconds, cycles, instructions) Abstractions: Instruction Set Architecture Assembly Language and Machine Language What
More informationDIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute
DIGITAL TECHNIC Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COMBINATIONAL LOGIC DEIGN: ARITHMETIC (THROUGH EXAMPLE) 2nd (Autumn) term 28/29 COMBINATIONAL LOGIC
More informationChapter 3 Arithmetic for Computers
Chapter 3 Arithmetic for Computers 1 Arithmetic Where we've been: Abstractions: Instruction Set Architecture Assembly Language and Machine Language What's up ahead: Implementing the Architecture operation
More informationExperiment 7 Arithmetic Circuits Design and Implementation
Experiment 7 Arithmetic Circuits Design and Implementation Introduction: Addition is just what you would expect in computers. Digits are added bit by bit from right to left, with carries passed to the
More informationCAD4 The ALU Fall 2009 Assignment. Description
CAD4 The ALU Fall 2009 Assignment To design a 16bit ALU which will be used in the datapath of the microprocessor. This ALU must support two s complement arithmetic and the instructions in the baseline
More informationR07. Code No: V0423. II B. Tech II Semester, Supplementary Examinations, April
SET  1 II B. Tech II Semester, Supplementary Examinations, April  2012 SWITCHING THEORY AND LOGIC DESIGN (Electronics and Communications Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions
More informationMicrocomputers. Outline. Number Systems and Digital Logic Review
Microcomputers Number Systems and Digital Logic Review Lecture 11 Outline Number systems and formats Common number systems Base Conversion Integer representation Signed integer representation Binary coded
More informationEC2303COMPUTER ARCHITECTURE AND ORGANIZATION
EC2303COMPUTER ARCHITECTURE AND ORGANIZATION QUESTION BANK UNITII 1. What are the disadvantages in using a ripple carry adder? (NOV/DEC 2006) The main disadvantage using ripple carry adder is time delay.
More informationUNITIII REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT
UNITIII 1 KNREDDY UNITIII REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT Register Transfer: Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Micro operations Logic
More informationLecture (03) Binary Codes Registers and Logic Gates
Lecture (03) Binary Codes Registers and Logic Gates By: Dr. Ahmed ElShafee Binary Codes Digital systems use signals that have two distinct values and circuit elements that have two stable states. binary
More informationChapter 4: Combinational Logic
Chapter 4: Combinational Logic Combinational Circuit Design Analysis Procedure (Find out nature of O/P) Boolean Expression Approach Truth Table Approach Design Procedure Example : BCD to Excess3 code
More informationLECTURE 4. Logic Design
LECTURE 4 Logic Design LOGIC DESIGN The language of the machine is binary that is, sequences of 1 s and 0 s. But why? At the hardware level, computers are streams of signals. These signals only have two
More informationII/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION. Answer ONE question from each unit.
Hall Ticket Number: 14CS IT303 November, 2017 Third Semester Time: Three Hours Answer Question No.1 compulsorily. II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION Common for CSE & IT Digital Logic
More informationEE292: Fundamentals of ECE
EE292: Fundamentals of ECE Fall 2012 TTh 10:0011:15 SEB 1242 Lecture 22 121115 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Binary Number Representation Binary Arithmetic Combinatorial Logic
More informationCOPYRIGHTED MATERIAL INDEX
INDEX Absorption law, 31, 38 Acyclic graph, 35 tree, 36 Addition operators, in VHDL (VHSIC hardware description language), 192 Algebraic division, 105 AND gate, 48 49 Antisymmetric, 34 Applicable input
More information60265: Winter ANSWERS Exercise 4 Combinational Circuit Design
60265: Winter 2010 Computer Architecture I: Digital Design ANSWERS Exercise 4 Combinational Circuit Design Question 1. Onebit Comparator [ 1 mark ] Consider two 1bit inputs, A and B. If we assume that
More informationCS8803: Advanced Digital Design for Embedded Hardware
CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883
More informationCode No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems
More informationBasic Arithmetic (adding and subtracting)
Basic Arithmetic (adding and subtracting) Digital logic to show add/subtract Boolean algebra abstraction of physical, analog circuit behavior 1 0 CPU components ALU logic circuits logic gates transistors
More informationECEN 468 Advanced Logic Design
ECEN 468 Advanced Logic Design Lecture 26: Verilog Operators ECEN 468 Lecture 26 Operators Operator Number of Operands Result Arithmetic 2 Binary word Bitwise 2 Binary word Reduction 1 Bit Logical 2 Boolean
More informationNumber System. Introduction. Decimal Numbers
Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26
More information2008 The McGrawHill Companies, Inc. All rights reserved.
28 The McGrawHill Companies, Inc. All rights reserved. 28 The McGrawHill Companies, Inc. All rights reserved. All or Nothing Gate Boolean Expression: A B = Y Truth Table (ee next slide) or AB = Y 28
More informationParallel logic circuits
Computer Mathematics Week 9 Parallel logic circuits College of Information cience and Engineering Ritsumeikan University last week the mathematics of logic circuits the foundation of all digital design
More informationChapter 6 CombinationalCircuit Building Blocks
Chapter 6 CombinationalCircuit Building Blocks Commonly used combinational building blocks in design of large circuits: Multiplexers Decoders Encoders Comparators Arithmetic circuits Multiplexers A multiplexer
More informationPrinciples of Digital Techniques PDT (17320) Assignment No State advantages of digital system over analog system.
Assignment No. 1 1. State advantages of digital system over analog system. 2. Convert following numbers a. (138.56) 10 = (?) 2 = (?) 8 = (?) 16 b. (1110011.011) 2 = (?) 10 = (?) 8 = (?) 16 c. (3004.06)
More informationBinary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
More informationNADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni
NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni625531 Question Bank for the Units I to V SEMESTER BRANCH SUB CODE 3rd Semester B.E. / B.Tech. Electrical and Electronics Engineering
More informationCombinational Circuit Design
Modeling Combinational Circuits with Verilog Prof. ChienNan Liu TEL: 342275 ext:34534 Email: jimmy@ee.ncu.edu.tw 3 Combinational Circuit Design Outputs are functions of inputs inputs Combinational Circuit
More information4. Write a sumofproducts representation of the following circuit. Y = (A + B + C) (A + B + C)
COP 273, Winter 26 Exercises 2  combinational logic Questions. How many boolean functions can be defined on n input variables? 2. Consider the function: Y = (A B) (A C) B (a) Draw a combinational logic
More informationDepartment of Electrical Engineering McGill University ECSE 221 Introduction to Computer Engineering Assignment 2 Combinational Logic
Department of Electrical Engineering McGill University ECSE 221 Introduction to Computer Engineering Assignment 2 Combinational Logic Question 1: Due October 19 th, 2009 A convenient shorthand for specifying
More informationSUBJECT CODE: IT T35 DIGITAL SYSTEM DESIGN YEAR / SEM : 2 / 3
UNIT  I PART A (2 Marks) 1. Using Demorgan s theorem convert the following Boolean expression to an equivalent expression that has only OR and complement operations. Show the function can be implemented
More informationCHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES
CHAPTER 9 MULTIPLEXERS, DECODERS, AND PROGRAMMABLE LOGIC DEVICES This chapter in the book includes: Objectives Study Guide 9.1 Introduction 9.2 Multiplexers 9.3 ThreeState Buffers 9.4 Decoders and Encoders
More informationELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE2700: Digital Logic Design Winter Notes  Unit 4. hundreds.
UNSIGNED INTEGER NUMBERS Notes  Unit 4 DECIMAL NUMBER SYSTEM A decimal digit can take values from to 9: Digitbydigit representation of a positive integer number (powers of ): DIGIT 3 4 5 6 7 8 9 Number:
More informationCS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN Lecture Notes
CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN Lecture Notes 1.1 Introduction: UNIT I BOOLEAN ALGEBRA AND LOGIC GATES Like normal algebra, Boolean algebra uses alphabetical letters to denote variables. Unlike
More informationDLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 1 DLD P VIDYA SAGAR
UNIT I Digital Systems: Binary Numbers, Octal, Hexa Decimal and other base numbers, Number base conversions, complements, signed binary numbers, Floating point number representation, binary codes, error
More informationModule 10. Encoder. Table of Contents
1 Module 10 Encoder Table of Contents 1. Introduction 2. Code converters 3. Basics of Encoder 3.1 Linear encoders 3.1.1 Octal to binary encoder 3.1.2 Decimal to BCD encoder 3.1.3 Hexadecimal to binary
More informationUNIT  V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT
UNIT  V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents Memory: Introduction, RandomAccess memory, Memory decoding, ROM, Programmable Logic Array, Programmable Array Logic, Sequential programmable
More information(+A) + ( B) + (A B) (B A) + (A B) ( A) + (+ B) (A B) + (B A) + (A B) (+ A) (+ B) + (A  B) (B A) + (A B) ( A) ( B) (A B) + (B A) + (A B)
COMPUTER ARITHMETIC 1. Addition and Subtraction of Unsigned Numbers The direct method of subtraction taught in elementary schools uses the borrowconcept. In this method we borrow a 1 from a higher significant
More informationIT 201 Digital System Design Module II Notes
IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.
More informationCS/COE 0447 Example Problems for Exam 2 Spring 2011
CS/COE 0447 Example Problems for Exam 2 Spring 2011 1) Show the steps to multiply the 4bit numbers 3 and 5 with the fast shiftadd multipler. Use the table below. List the multiplicand (M) and product
More informationChapter 4 Arithmetic
Computer Eng 1 (ECE290) Chapter 4 Arithmetic Functions and Circuits HOANG Trang Reference: 2008 Pearson Education, Inc. Lecture note of Prof.Donna J.Brown Overview Binary adders Half and full adders Ripple
More informationIA Digital Electronics  Supervision I
IA Digital Electronics  Supervision I Nandor Licker Due noon two days before the supervision 1 Overview The goal of this exercise is to design an 8digit calculator capable of adding
More information*Instruction Matters: Purdue Academic Course Transformation. Introduction to Digital System Design. Module 4 Arithmetic and Computer Logic Circuits
Purdue IM:PACT* Fall 2018 Edition *Instruction Matters: Purdue Academic Course Transformation Introduction to Digital System Design Module 4 Arithmetic and Computer Logic Circuits Glossary of Common Terms
More informationKING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT COE 202: Digital Logic Design Term 162 (Spring 2017) Instructor: Dr. Abdulaziz Barnawi Class time: U.T.R.: 11:0011:50AM Class
More informationCONTENTS CHAPTER 1: NUMBER SYSTEM. Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii)
CONTENTS Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii) CHAPTER 1: NUMBER SYSTEM 1.1 Digital Electronics... 1 1.1.1 Introduction... 1 1.1.2 Advantages of Digital Systems...
More informationELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE278: Digital Logic Design Fall Notes  Unit 4. hundreds.
ECE78: Digital Logic Design Fall 6 UNSIGNED INTEGER NUMBERS Notes  Unit 4 DECIMAL NUMBER SYSTEM A decimal digit can take values from to 9: Digitbydigit representation of a positive integer number (powers
More information2. BOOLEAN ALGEBRA 2.1 INTRODUCTION
2. BOOLEAN ALGEBRA 2.1 INTRODUCTION In the previous chapter, we introduced binary numbers and binary arithmetic. As you saw in binary arithmetic and in the handling of floatingpoint numbers, there is
More informationPrinciples of Computer Architecture. Chapter 3: Arithmetic
31 Chapter 3  Arithmetic Principles of Computer Architecture Miles Murdocca and Vincent Heuring Chapter 3: Arithmetic 32 Chapter 3  Arithmetic 3.1 Overview Chapter Contents 3.2 Fixed Point Addition
More informationCode No: R Set No. 1
Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems
More informationDIGITAL ELECTRONICS. Vayu Education of India
DIGITAL ELECTRONICS ARUN RANA Assistant Professor Department of Electronics & Communication Engineering Doon Valley Institute of Engineering & Technology Karnal, Haryana (An ISO 9001:2008 ) Vayu Education
More information3. The high voltage level of a digital signal in positive logic is : a) 1 b) 0 c) either 1 or 0
1. The number of level in a digital signal is: a) one b) two c) four d) ten 2. A pure sine wave is : a) a digital signal b) analog signal c) can be digital or analog signal d) neither digital nor analog
More informationChapter 1 Review of Number Systems
1.1 Introduction Chapter 1 Review of Number Systems Before the inception of digital computers, the only number system that was in common use is the decimal number system which has a total of 10 digits
More informationECE468 Computer Organization & Architecture. The Design Process & ALU Design
ECE6 Computer Organization & Architecture The Design Process & Design The Design Process "To Design Is To Represent" Design activity yields description/representation of an object  Traditional craftsman
More informationDIGITAL SYSTEM DESIGN
DIGITAL SYSTEM DESIGN UNIT I: Introduction to Number Systems and Boolean Algebra Digital and Analog Basic Concepts, Some history of Digital SystemsIntroduction to number systems, Binary numbers, Number
More informationDigital Circuit Design and Language. Datapath Design. Chang, Ik Joon Kyunghee University
Digital Circuit Design and Language Datapath Design Chang, Ik Joon Kyunghee University Typical Synchronous Design + Control Section : Finite State Machine + Data Section: Adder, Multiplier, Shift Register
More informationChapter 3 Part 2 Combinational Logic Design
University of Wisconsin  Madison EE/omp ci 352 Digital ystems Fundamentals Kewal K. aluja and u Hen Hu pring 2002 hapter 3 Part 2 ombinational Logic Design Originals by: harles R. Kime and Tom Kamisnski
More informationINSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad
INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad  500 043 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Name : DIGITAL LOGIC DESISN Code : AEC020 Class : B Tech III Semester
More informationArea Efficient, Low Power Array Multiplier for Signed and Unsigned Number. Chapter 3
Area Efficient, Low Power Array Multiplier for Signed and Unsigned Number Chapter 3 Area Efficient, Low Power Array Multiplier for Signed and Unsigned Number Chapter 3 3.1 Introduction The various sections
More informationDate Performed: Marks Obtained: /10. Group Members (ID):. Experiment # 09 MULTIPLEXERS
Name: Instructor: Engr. Date Performed: Marks Obtained: /10 Group Members (ID):. Checked By: Date: Experiment # 09 MULTIPLEXERS OBJECTIVES: To experimentally verify the proper operation of a multiplexer.
More informationAgenda EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN. Lecture 1: Introduction. Go over the syllabus 3/31/2010
// EE : INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN Lecture : Introduction /9/ Avinash Kodi, kodi@ohio.edu Agenda Go over the syllabus Introduction ti to Digital it Systems // Why Digital Systems?
More informationLecture Topics. Announcements. Today: Integer Arithmetic (P&H ) Next: continued. Consulting hours. Introduction to Sim. Milestone #1 (due 1/26)
Lecture Topics Today: Integer Arithmetic (P&H 3.13.4) Next: continued 1 Announcements Consulting hours Introduction to Sim Milestone #1 (due 1/26) 2 1 Overview: Integer Operations Internal representation
More information