# EE 8351 Digital Logic Circuits Ms.J.Jayaudhaya, ASP/EEE

Size: px
Start display at page:

Transcription

1 EE 8351 Digital Logic Circuits Ms.J.Jayaudhaya, ASP/EEE 1

2 Logic circuits for digital systems may be combinational or sequential. A combinational circuit consists of input variables, logic gates, and output variables. 2

3 4-2. Analysis procedure To obtain the output Boolean functions from a logic diagram, proceed as follows: 1. Label all gate outputs that are a function of input variables with arbitrary symbols. Determine the Boolean functions for each gate output. 2. Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates. 3

4 4-2. Analysis procedure 3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained. 4. By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables. 4

5 Example F 2 = AB + AC + BC; T 1 = A + B + C; T 2 = ABC; T 3 = F 2 T 1 ; F 1 = T 3 + T 2 F 1 = T 3 + T 2 = F 2 T 1 + ABC = A BC + A B C + AB C + ABC 5

6 Derive truth table from logic diagram We can derive the truth table in Table 4-1 by using the circuit of Fig

7 4-3. Design procedure 1. Table4-2 is a Code-Conversion example, first, we can list the relation of the BCD and Excess-3 codes in the truth table. 7

8 Karnaugh map 2. For each symbol of the Excess-3 code, we use 1 s to draw the map for simplifying Boolean function. 8

9 Circuit implementation z = D ; y = CD + C D = CD + (C + D) x = B C + B D + BC D = B (C + D) + B(C + D) w = A + BC + BD = A + B(C + D) 9

10 4-4. Binary Adder-Subtractor A combinational circuit that performs the addition of two bits is called a half adder. The truth table for the half adder is listed below: S: Sum C: Carry S = x y + xy C = xy 10

12 Full-Adder One that performs the addition of three bits(two significant bits and a previous carry) is a full adder. 12

13 Simplified Expressions C S = x y z + x yz + xy z + xyz C = xy + xz + yz 13

14 Full adder implemented in SOP 14

15 Another implementation Full-adder can also implemented with two half adders and one OR gate (Carry Look-Ahead adder). S = z (x y) = z (xy + x y) + z(xy + x y) = xy z + x yz + xyz + x y z C = z(xy + x y) + xy = xy z + x yz + xy 15

17 Carry Propagation Fig.4-9 causes a unstable factor on carry bit, and produces a longest propagation delay. The signal from C i to the output carry C i+1, propagates through an AND and OR gates, so, for an n-bit RCA, there are 2n gate levels for the carry to propagate from input to output. 17

18 Carry Propagation Because the propagation delay will affect the output signals on different time, so the signals are given enough time to get the precise and stable outputs. The most widely used technique employs the principle of carry look-ahead to improve the speed of the algorithm. 18

19 Boolean functions P i = A i B i G i = A i B i Output sum and carry S i = P i C i C i+1 = G i + P i C i G i : carry generate C 0 = input carry C 1 = G 0 + P 0 C 0 steady state value steady state value P i : carry propagate C 2 = G 1 + P 1 C 1 = G 1 + P 1 G 0 + P 1 P 0 C 0 C 3 = G 2 + P 2 C 2 = G 2 + P 2 G 1 + P 2 P 1 G 0 + P 2 P 1 P 0 C 0 C 3 does not have to wait for C 2 and C 1 to propagate. 19

20 Logic diagram of carry look-ahead generator C 3 is propagated at the same time as C 2 and C 1. 20

21 4-bit adder with carry lookahead Delay time of n-bit CLAA = XOR + (AND + OR) + XOR 21

22 Binary subtractor M = 1 subtractor ; M = 0 adder 22

23 Overflow It is worth noting Fig.4-13 that binary numbers in the signed-complement system are added and subtracted by the same basic addition and subtraction rules as unsigned numbers. Overflow is a problem in digital computers because the number of bits that hold the number is finite and a result that contains n+1 bits cannot be accommodated. 23

24 Overflow on signed and unsigned When two unsigned numbers are added, an overflow is detected from the end carry out of the MSB position. When two signed numbers are added, the sign bit is treated as part of the number and the end carry does not indicate an overflow. An overflow cann t occur after an addition if one number is positive and the other is negative. An overflow may occur if the two numbers added are both positive or both negative. 24

25 4-5 Decimal adder BCD adder can t exceed 9 on each input digit. K is the carry. 25

26 Rules of BCD adder When the binary sum is greater than 1001, we obtain a non-valid BCD representation. The addition of binary 6(0110) to the binary sum converts it to the correct BCD representation and also produces an output carry as required. To distinguish them from binary 1000 and 1001, which also have a 1 in position Z 8, we specify further that either Z 4 or Z 2 must have a 1. C = K + Z 8 Z 4 + Z 8 Z 2 26

27 Implementation of BCD adder A decimal parallel adder that adds n decimal digits needs n BCD adder stages. The output carry from one stage must be connected to the input carry of the next higherorder stage. If =

28 4-6. Binary multiplier Usually there are more bits in the partial products and it is necessary to use full adders to produce the sum of the partial products. And 28

29 4-bit by 3-bit binary multiplier For J multiplier bits and K multiplicand bits we need (J X K) AND gates and (J 1) K-bit adders to produce a product of J+K bits. K=4 and J=3, we need 12 AND gates and two 4-bit adders. 29

30 4-7. Magnitude comparator The equality relation of each pair of bits can be expressed logically with an exclusive-nor function as: A = A 3 A 2 A 1 A 0 ; B = B 3 B 2 B 1 B 0 x i =A i B i +A i B i for i = 0, 1, 2, 3 (A = B) = x 3 x 2 x 1 x 0 30

31 Magnitude comparator We inspect the relative magnitudes of pairs of MSB. If equal, we compare the next lower significant pair of digits until a pair of unequal digits is reached. If the corresponding digit of A is 1 and that of B is 0, we conclude that A>B. (A>B)= A 3 B 3 +x 3 A 2 B 2 +x 3 x 2 A 1 B 1 +x 3 x 2 x 1 A 0 B 0 (A<B)= A 3 B 3 +x 3 A 2 B 2 +x 3 x 2 A 1 B 1 +x 3 x 2 x 1 A 0 B 0 31

32 4-8. Decoders The decoder is called n-to-m-line decoder, where m 2 n. the decoder is also used in conjunction with other code converters such as a BCD-to-seven_segment decoder. 3-to-8 line decoder: For each possible input combination, there are seven outputs that are equal to 0 and only one that is equal to 1. 32

33 Implementation and truth table 33

34 Decoder with enable input Some decoders are constructed with NAND gates, it becomes more economical to generate the decoder minterms in their complemented form. As indicated by the truth table, only one output can be equal to 0 at any given time, all other outputs are equal to 1. 34

35 Demultiplexer A decoder with an enable input is referred to as a decoder/demultiplexer. The truth table of demultiplexer is the same with decoder. A B D0 E Demultiplexer D1 D2 D3 35

36 3-to-8 decoder with enable implement the 4-to-16 decoder 36

37 Implementation of a Full Adder with a Decoder From table 4-4, we obtain the functions for the combinational circuit in sum of minterms: S(x, y, z) = (1, 2, 4, 7) C(x, y, z) = (3, 5, 6, 7) 37

38 4-9. Encoders An encoder is the inverse operation of a decoder. We can derive the Boolean functions by table 4-7 z = D 1 + D 3 + D 5 + D 7 y = D 2 + D 3 + D 6 + D 7 x = D 4 + D 5 + D 6 + D 7 38

39 Priority encoder If two inputs are active simultaneously, the output produces an undefined combination. We can establish an input priority to ensure that only one input is encoded. Another ambiguity in the octal-to-binary encoder is that an output with all 0 s is generated when all the inputs are 0; the output is the same as when D 0 is equal to 1. The discrepancy tables on Table 4-7 and Table 4-8 can resolve aforesaid condition by providing one more output to indicate that at least one input is equal to 1. 39

40 Priority encoder V=0 no valid inputs V=1 valid inputs X s in output columns represent don t-care conditions X s in the input columns are useful for representing a truth table in condensed form. Instead of listing all 16 minterms of four variables. 40

41 4-input priority encoder Implementation of table x = D 2 + D 3 y = D 3 + D 1 D 2 V = D 0 + D 1 + D 2 + D 3 41

42 4-10. Multiplexers S = 0, Y = I 0 Truth Table S Y Y = S I 0 + SI 1 S = 1, Y = I 1 0 I 0 1 I 1 42

43 4-to-1 Line Multiplexer 43

44 Quadruple 2-to-1 Line Multiplexer Multiplexer circuits can be combined with common selection inputs to provide multiple-bit selection logic. Compare with Fig4-24. I 0 Y I 1 44

45 Boolean function implementation A more efficient method for implementing a Boolean function of n variables with a multiplexer that has n-1 selection inputs. F(x, y, z) = (1,2,6,7) 45

46 4-input function with a multiplexer F(A, B, C, D) = (1, 3, 4, 11, 12, 13, 14, 15) 46

47 Three-State Gates A multiplexer can be constructed with three-state gates. 47

48 4-11. HDL for combinational circuits A module can be described in any one of the following modeling techniques: 1. Gate-level modeling using instantiation of primitive gates and user-defined modules. 2. Dataflow modeling using continuous assignment statements with keyword assign. 3. Behavioral modeling using procedural assignment statements with keyword always. 48

49 Gate-level Modeling A circuit is specified by its logic gates and their interconnection. Verilog recognizes 12 basic gates as predefined primitives. The logic values of each gate may be 1, 0, x(unknown), z(highimpedance). 49

50 Gate-level description on Verilog code The wire declaration is for internal connections. 50

51 Design methodologies There are two basic types of design methodologies: topdown and bottom-up. Top-down: the top-level block is defined and then the subblocks necessary to build the top-level block are identified.(fig.4-9 binary adder) Bottom-up: the building blocks are first identified and then combined to build the top-level block.(example bit adder) 51

52 A bottom-up hierarchical description 52

55 Three state gates Gates statement: gate name(output, input, control) >> bufif1(out, A, control); A = OUT when control = 1, OUT = z when control = 0; >> notif0(y, B, enable); Y = B when enable = 0, Y = z when enable = 1; 55

56 2-to-1 multiplexer HDL uses the keyword tri to indicate that the output has multiple drivers. module muxtri (A, B, select, OUT); input A,B,select; output OUT; tri OUT; bufif1 (OUT,A,select); bufif0 (OUT,B,select); endmodule 56

57 Dataflow modeling It uses a number of operators that act on operands to produce desired results. Verilog HDL provides about 30 operator types. Table 4-10 Symbol Operation + binary addition & binary subtraction bit-wise AND bit-wise OR ^ bit-wise XOR ~ bit-wise NOT == equality > greater than < less than { } concatenation?: conditional 57

58 Dataflow modeling A continuous assignment is a statement that assigns a value to a net. The data type net is used in Verilog HDL to represent a physical connection between circuit elements. A net defines a gate output declared by an output or wire. 58

59 Dataflow description of 4-bit adder HDL Example 4-4 //Dataflow description of 4-bit adder module binary_adder (A,B,Cin,SUM,Cout); input [3:0] A,B; input Cin; output [3:0] SUM; output Cout; assign {Cout,SUM} = A + B +Cin; endmodule 59

60 Data flow description of a 4-bit comparator 60

61 Dataflow description of 2-1 multiplexer Conditional operator(? : ) Condition? true-expression : false-expression; 61

62 Behavioral modeling It is used mostly to describe sequential circuits, but can be used also to describe combinational circuits. Behavioral descriptions use the keyword always followed by a list of procedural assignment statements. The target output of procedural assignment statements must be of the reg data type. Contrary to the wire data type, where the target output of an assignment may be continuously updated, a reg data type retains its value until a new value is assigned. 62

63 Behavioral description of 2-1 multiplexer 63

64 4-to-1-line Multiplexer 64

65 Writing a simple test bench In addition to the always statement, test benches use the initial statement to provide stimulus to the circuit under test. The always statement executes repeatedly in a loop. The initial statement executes only once starting from simulation time=0 and may continue with any operations that are delayed by a given number of time units as specified by the symbol #. For example: initial begin A = 0; B = 0; #10 A = 1; #20 A = 0; B = 1; end 65

66 Stimulus and design modules interaction The signals of test bench as inputs to the design module are reg data type, the outputs of design module to test bench are wire data type. 66

67 Example

68 Gate Level of Verilog Code of Fig

69 Test Bench of the Figure

### Combinational Logic. Prof. Wangrok Oh. Dept. of Information Communications Eng. Chungnam National University. Prof. Wangrok Oh(CNU) 1 / 93

Combinational Logic Prof. Wangrok Oh Dept. of Information Communications Eng. Chungnam National University Prof. Wangrok Oh(CNU) / 93 Overview Introduction 2 Combinational Circuits 3 Analysis Procedure

### Combinational Logic II

Combinational Logic II Ranga Rodrigo July 26, 2009 1 Binary Adder-Subtractor Digital computers perform variety of information processing tasks. Among the functions encountered are the various arithmetic

### Combinational Circuits

Combinational Circuits Combinational circuit consists of an interconnection of logic gates They react to their inputs and produce their outputs by transforming binary information n input binary variables

### Chapter 4. Combinational Logic

Chapter 4. Combinational Logic Tong In Oh 1 4.1 Introduction Combinational logic: Logic gates Output determined from only the present combination of inputs Specified by a set of Boolean functions Sequential

### Combinational Logic Circuits

Combinational Logic Circuits By Dr. M. Hebaishy Digital Logic Design Ch- Rem.!) Types of Logic Circuits Combinational Logic Memoryless Outputs determined by current values of inputs Sequential Logic Has

### Chap.3 3. Chap reduces the complexity required to represent the schematic diagram of a circuit Library

3.1 Combinational Circuits 2 Chap 3. logic circuits for digital systems: combinational vs sequential Combinational Logic Design Combinational Circuit (Chap 3) outputs are determined by the present applied

### DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 3 DLD P VIDYA SAGAR

DLD UNIT III Combinational Circuits (CC), Analysis procedure, Design Procedure, Combinational circuit for different code converters and other problems, Binary Adder- Subtractor, Decimal Adder, Binary Multiplier,

### HDL for Combinational Circuits. ENEL211 Digital Technology

HDL for Combinational Circuits ENEL211 Digital Technology Lecture Outline Vectors Modular design Tri-state gates Dataflow modelling Behavioural Modelling Vectors Often we want multi-bit quantities in digital

### NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-II COMBINATIONAL CIRCUITS

NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF ELETRONICS AND COMMUNICATION ENGINEERING COURSE NOTES SUBJECT: DIGITAL ELECTRONICS CLASS: II YEAR ECE SUBJECT CODE: EC2203

### 1. Mark the correct statement(s)

1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another

### B.Tech II Year I Semester (R13) Regular Examinations December 2014 DIGITAL LOGIC DESIGN

B.Tech II Year I Semester () Regular Examinations December 2014 (Common to IT and CSE) (a) If 1010 2 + 10 2 = X 10, then X is ----- Write the first 9 decimal digits in base 3. (c) What is meant by don

### Hardware Description Languages (HDLs) Verilog

Hardware Description Languages (HDLs) Verilog Material from Mano & Ciletti book By Kurtulus KULLU Ankara University What are HDLs? A Hardware Description Language resembles a programming language specifically

www.vidyarthiplus.com Question Paper Code : 31298 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013. Third Semester Computer Science and Engineering CS 2202/CS 34/EC 1206 A/10144 CS 303/080230012--DIGITAL

### NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY CS 2202 DIGITAL PRINCIPLES AND SYSTEM DESIGN

NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF INFORMATION TECHNOLOGY CS 2202 DIGITAL PRINCIPLES AND SYSTEM DESIGN UNIT 2 COMBINATIONAL LOGIC Combinational circuits Analysis

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems

UNIT II - COMBINATIONAL LOGIC Part A 2 Marks. 1. Define Combinational circuit A combinational circuit consist of logic gates whose outputs at anytime are determined directly from the present combination

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science & Systems

### Combinational Logic with MSI and LSI

1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010 1010101010101010101010101010101010101010101010101010101010101010101010101010101010

### Combinational Circuit Design

Modeling Combinational Circuits with Verilog Prof. Chien-Nan Liu TEL: 3-42275 ext:34534 Email: jimmy@ee.ncu.edu.tw 3- Combinational Circuit Design Outputs are functions of inputs inputs Combinational Circuit

### LOGIC CIRCUITS. Kirti P_Didital Design 1

LOGIC CIRCUITS Kirti P_Didital Design 1 Introduction The digital system consists of two types of circuits, namely (i) Combinational circuits and (ii) Sequential circuit A combinational circuit consists

### Chapter 3 Part 2 Combinational Logic Design

University of Wisconsin - Madison ECE/Comp Sci 352 Digital Systems Fundamentals Kewal K. Saluja and Yu Hen Hu Spring 2002 Chapter 3 Part 2 Combinational Logic Design Originals by: Charles R. Kime and Tom

### VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS YEAR / SEMESTER: II / III ACADEMIC YEAR: 2015-2016 (ODD

### COMBINATIONAL LOGIC CIRCUITS

COMBINATIONAL LOGIC CIRCUITS 4.1 INTRODUCTION The digital system consists of two types of circuits, namely: (i) Combinational circuits and (ii) Sequential circuits A combinational circuit consists of logic

28 The McGraw-Hill Companies, Inc. All rights reserved. 28 The McGraw-Hill Companies, Inc. All rights reserved. All or Nothing Gate Boolean Expression: A B = Y Truth Table (ee next slide) or AB = Y 28

### Code No: R Set No. 1

Code No: R059210504 Set No. 1 II B.Tech I Semester Supplementary Examinations, February 2007 DIGITAL LOGIC DESIGN ( Common to Computer Science & Engineering, Information Technology and Computer Science

### Chapter 3. Gate-Level Minimization. Outlines

Chapter 3 Gate-Level Minimization Introduction The Map Method Four-Variable Map Five-Variable Map Outlines Product of Sums Simplification Don t-care Conditions NAND and NOR Implementation Other Two-Level

### UNIT- V COMBINATIONAL LOGIC DESIGN

UNIT- V COMBINATIONAL LOGIC DESIGN NOTE: This is UNIT-V in JNTUK and UNIT-III and HALF PART OF UNIT-IV in JNTUA SYLLABUS (JNTUK)UNIT-V: Combinational Logic Design: Adders & Subtractors, Ripple Adder, Look

### QUESTION BANK FOR TEST

CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK FOR TEST 1 Note: This represents a sample set. Please study all the topics from the lecture notes. Question 1. Multiple Choice

### Verilog for Combinational Circuits

Verilog for Combinational Circuits Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2014 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/

### SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : STLD(16EC402) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech

### Combinational Logic Use the Boolean Algebra and the minimization techniques to design useful circuits No feedback, no memory Just n inputs, m outputs

Combinational Logic Use the Boolean Algebra and the minimization techniques to design useful circuits No feedback, no memory Just n inputs, m outputs and an arbitrary truth table Analysis Procedure We

### Code No: 07A3EC03 Set No. 1

Code No: 07A3EC03 Set No. 1 II B.Tech I Semester Regular Examinations, November 2008 SWITCHING THEORY AND LOGIC DESIGN ( Common to Electrical & Electronic Engineering, Electronics & Instrumentation Engineering,

### R07. Code No: V0423. II B. Tech II Semester, Supplementary Examinations, April

SET - 1 II B. Tech II Semester, Supplementary Examinations, April - 2012 SWITCHING THEORY AND LOGIC DESIGN (Electronics and Communications Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

### R a) Simplify the logic functions from binary to seven segment display code converter (8M) b) Simplify the following using Tabular method

SET - 1 1. a) Convert the decimal number 250.5 to base 3, base 4 b) Write and prove de-morgan laws c) Implement two input EX-OR gate from 2 to 1 multiplexer (3M) d) Write the demerits of PROM (3M) e) What

### R10. II B. Tech I Semester, Supplementary Examinations, May

SET - 1 1. a) Convert the following decimal numbers into an equivalent binary numbers. i) 53.625 ii) 4097.188 iii) 167 iv) 0.4475 b) Add the following numbers using 2 s complement method. i) -48 and +31

### SUBJECT CODE: IT T35 DIGITAL SYSTEM DESIGN YEAR / SEM : 2 / 3

UNIT - I PART A (2 Marks) 1. Using Demorgan s theorem convert the following Boolean expression to an equivalent expression that has only OR and complement operations. Show the function can be implemented

### END-TERM EXAMINATION

(Please Write your Exam Roll No. immediately) END-TERM EXAMINATION DECEMBER 2006 Exam. Roll No... Exam Series code: 100919DEC06200963 Paper Code: MCA-103 Subject: Digital Electronics Time: 3 Hours Maximum

### Arithmetic Circuits. Nurul Hazlina Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit

Nurul Hazlina 1 1. Adder 2. Multiplier 3. Arithmetic Logic Unit (ALU) 4. HDL for Arithmetic Circuit Nurul Hazlina 2 Introduction 1. Digital circuits are frequently used for arithmetic operations 2. Fundamental

### CONTENTS CHAPTER 1: NUMBER SYSTEM. Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii)

CONTENTS Foreword...(vii) Preface... (ix) Acknowledgement... (xi) About the Author...(xxiii) CHAPTER 1: NUMBER SYSTEM 1.1 Digital Electronics... 1 1.1.1 Introduction... 1 1.1.2 Advantages of Digital Systems...

### Computer Organization

Computer Organization (Logic circuits design and minimization) KR Chowdhary Professor & Head Email: kr.chowdhary@gmail.com webpage: krchowdhary.com Department of Computer Science and Engineering MBM Engineering

### (ii) Simplify and implement the following SOP function using NOR gates:

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EE6301 DIGITAL LOGIC CIRCUITS UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES PART A 1. How can an OR gate be

### CENG 241 Digital Design 1

CENG 241 Digital Design 1 Lecture 5 Amirali Baniasadi amirali@ece.uvic.ca This Lecture Lab Review of last lecture: Gate-Level Minimization Continue Chapter 3:XOR functions, Hardware Description Language

### Contents. Appendix D Verilog Summary Page 1 of 16

Appix D Verilog Summary Page 1 of 16 Contents Appix D Verilog Summary... 2 D.1 Basic Language Elements... 2 D.1.1 Keywords... 2 D.1.2 Comments... 2 D.1.3 Identifiers... 2 D.1.4 Numbers and Strings... 3

### Design Using Verilog

EGC220 Design Using Verilog Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu Basic Verilog Lexical Convention Lexical convention are close to C++. Comment // to the of the line. /* to

### Chapter 6 Combinational-Circuit Building Blocks

Chapter 6 Combinational-Circuit Building Blocks Commonly used combinational building blocks in design of large circuits: Multiplexers Decoders Encoders Comparators Arithmetic circuits Multiplexers A multiplexer

### Injntu.com Injntu.com Injntu.com R16

1. a) What are the three methods of obtaining the 2 s complement of a given binary (3M) number? b) What do you mean by K-map? Name it advantages and disadvantages. (3M) c) Distinguish between a half-adder

### UNIT I BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS PART-A (2 MARKS)

SUBJECT NAME: DIGITAL LOGIC CIRCUITS YEAR / SEM : II / III DEPARTMENT : EEE UNIT I BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS 1. What is variable mapping? 2. Name the two canonical forms for Boolean algebra.

### SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU DEPARTMENT OF INFORMATION TECHNOLOGY LESSON PLAN

SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU DEPARTMENT OF INFORMATION TECHNOLOGY LESSON PLAN SUBJECT: CSE 2.1.6 DIGITAL LOGIC DESIGN CLASS: 2/4 B.Tech., I SEMESTER, A.Y.2017-18 INSTRUCTOR: Sri A.M.K.KANNA

### DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY

DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY Dept/Sem: II CSE/03 DEPARTMENT OF ECE CS8351 DIGITAL PRINCIPLES AND SYSTEM DESIGN UNIT I BOOLEAN ALGEBRA AND LOGIC GATES PART A 1. How many

### Gate-Level Minimization

MEC520 디지털공학 Gate-Level Minimization Jee-Hwan Ryu School of Mechanical Engineering Gate-Level Minimization-The Map Method Truth table is unique Many different algebraic expression Boolean expressions may

### R07

www..com www..com SET - 1 II B. Tech I Semester Supplementary Examinations May 2013 SWITCHING THEORY AND LOGIC DESIGN (Com. to EEE, EIE, BME, ECC) Time: 3 hours Max. Marks: 80 Answer any FIVE Questions

### Digital Circuit Design and Language. Datapath Design. Chang, Ik Joon Kyunghee University

Digital Circuit Design and Language Datapath Design Chang, Ik Joon Kyunghee University Typical Synchronous Design + Control Section : Finite State Machine + Data Section: Adder, Multiplier, Shift Register

### 14:332:231 DIGITAL LOGIC DESIGN. Hardware Description Languages

14:332:231 DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 2013 Lecture #22: Introduction to Verilog Hardware Description Languages Basic idea: Language constructs

### CS8803: Advanced Digital Design for Embedded Hardware

CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883

Get Free notes at Module-I One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)

### Dr. S. Shirani COE2DI4 Midterm Test #1 Oct. 14, 2010

Dr. S. Shirani COE2DI4 Midterm Test #1 Oct. 14, 2010 Instructions: This examination paper includes 9 pages and 20 multiple-choice questions starting on page 3. You are responsible for ensuring that your

### VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF INFORMATION TECHNOLOGY & COMPUTER SCIENCE AND ENGINEERING QUESTION BANK II SEMESTER CS6201- DIGITAL PRINCIPLE AND SYSTEM DESIGN

### Introduction to Verilog HDL. Verilog 1

Introduction to HDL Hardware Description Language (HDL) High-Level Programming Language Special constructs to model microelectronic circuits Describe the operation of a circuit at various levels of abstraction

### Tutorial on Verilog HDL

Tutorial on Verilog HDL HDL Hardware Description Languages Widely used in logic design Verilog and VHDL Describe hardware using code Document logic functions Simulate logic before building Synthesize code

### 10EC33: DIGITAL ELECTRONICS QUESTION BANK

10EC33: DIGITAL ELECTRONICS Faculty: Dr.Bajarangbali E Examination QuestionS QUESTION BANK 1. Discuss canonical & standard forms of Boolean functions with an example. 2. Convert the following Boolean function

### Department of Electrical and Computer Engineering University of Wisconsin - Madison. ECE/CS 352 Digital System Fundamentals.

Department of Electrical and Computer Engineering University of Wisconsin - Madison ECE/C 352 Digital ystem Fundamentals Quiz #2 Thursday, March 7, 22, 7:15--8:3PM 1. (15 points) (a) (5 points) NAND, NOR

### Gate Level Minimization Map Method

Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically

### KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS COMPUTER ENGINEERING DEPARTMENT COE 202: Digital Logic Design Term 162 (Spring 2017) Instructor: Dr. Abdulaziz Barnawi Class time: U.T.R.: 11:00-11:50AM Class

### SWITCHING THEORY AND LOGIC CIRCUITS

SWITCHING THEORY AND LOGIC CIRCUITS COURSE OBJECTIVES. To understand the concepts and techniques associated with the number systems and codes 2. To understand the simplification methods (Boolean algebra

### FPGA Design Challenge :Techkriti 14 Digital Design using Verilog Part 1

FPGA Design Challenge :Techkriti 14 Digital Design using Verilog Part 1 Anurag Dwivedi Digital Design : Bottom Up Approach Basic Block - Gates Digital Design : Bottom Up Approach Gates -> Flip Flops Digital

### Chapter 3: Dataflow Modeling

Chapter 3: Dataflow Modeling Prof. Soo-Ik Chae Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 3-1 Objectives After completing this chapter, you will be able to: Describe

### Chapter 2 Combinational Logic Circuits

Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Overview Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard

### Gate-Level Minimization

Gate-Level Minimization ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines The Map Method

### Computer Arithmetic andveriloghdl Fundamentals

Computer Arithmetic andveriloghdl Fundamentals Joseph Cavanagh Santa Clara University California, USA ( r ec) CRC Press vf J TayiorS«. Francis Group ^"*" "^ Boca Raton London New York CRC Press is an imprint

### Objectives: 1. Design procedure. 2. Fundamental circuits. 1. Design procedure

Objectives: 1. Design procedure. 2. undamental circuits. 1. Design procedure Design procedure has five steps: o Specification. o ormulation. o Optimization. o Technology mapping. o Verification. Specification:

### Experiment 7 Arithmetic Circuits Design and Implementation

Experiment 7 Arithmetic Circuits Design and Implementation Introduction: Addition is just what you would expect in computers. Digits are added bit by bit from right to left, with carries passed to the

### Chapter 4. Combinational Logic. Dr. Abu-Arqoub

Chapter 4 Combinational Logic Introduction N Input Variables Combinational Logic Circuit M Output Variables 2 Design Procedure The problem is stated 2 The number of available input variables & required

### Chapter Three. Digital Components

Chapter Three 3.1. Combinational Circuit A combinational circuit is a connected arrangement of logic gates with a set of inputs and outputs. The binary values of the outputs are a function of the binary

### Digital logic fundamentals. Question Bank. Unit I

Digital logic fundamentals Question Bank Subject Name : Digital Logic Fundamentals Subject code: CA102T Staff Name: R.Roseline Unit I 1. What is Number system? 2. Define binary logic. 3. Show how negative

### ACS College of Engineering. Department of Biomedical Engineering. Logic Design Lab pre lab questions ( ) Cycle-1

ACS College of Engineering Department of Biomedical Engineering Logic Design Lab pre lab questions (2015-2016) Cycle-1 1. What is a combinational circuit? 2. What are the various methods of simplifying

### HANSABA COLLEGE OF ENGINEERING & TECHNOLOGY (098) SUBJECT: DIGITAL ELECTRONICS ( ) Assignment

Assignment 1. What is multiplexer? With logic circuit and function table explain the working of 4 to 1 line multiplexer. 2. Implement following Boolean function using 8: 1 multiplexer. F(A,B,C,D) = (2,3,5,7,8,9,12,13,14,15)

CS6303 COMPUTER ARCHITECTURE LESSION NOTES UNIT II ARITHMETIC OPERATIONS ALU In computing an arithmetic logic unit (ALU) is a digital circuit that performs arithmetic and logical operations. The ALU is

### Digital Design with FPGAs. By Neeraj Kulkarni

Digital Design with FPGAs By Neeraj Kulkarni Some Basic Electronics Basic Elements: Gates: And, Or, Nor, Nand, Xor.. Memory elements: Flip Flops, Registers.. Techniques to design a circuit using basic

### Digital Logic Design. Outline

Digital Logic Design Gate-Level Minimization CSE32 Fall 2 Outline The Map Method 2,3,4 variable maps 5 and 6 variable maps (very briefly) Product of sums simplification Don t Care conditions NAND and NOR

### Chapter 3 Part 2 Combinational Logic Design

University of Wisconsin - Madison EE/omp ci 352 Digital ystems Fundamentals Kewal K. aluja and u Hen Hu pring 2002 hapter 3 Part 2 ombinational Logic Design Originals by: harles R. Kime and Tom Kamisnski

### Verilog HDL. Design Examples

Verilog HDL Design Examples Verilog HDL Design Examples Joseph Cavanagh Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis

### Lecture 1: VHDL Quick Start. Digital Systems Design. Fall 10, Dec 17 Lecture 1 1

Lecture 1: VHDL Quick Start Digital Systems Design Fall 10, Dec 17 Lecture 1 1 Objective Quick introduction to VHDL basic language concepts basic design methodology Use The Student s Guide to VHDL or The

### Department of Computer Science & Engineering. Lab Manual DIGITAL LAB. Class: 2nd yr, 3rd sem SYLLABUS

Department of Computer Science & Engineering Lab Manual 435 DIGITAL LAB Class: 2nd yr, 3rd sem SYLLABUS. Verification of Boolean theorems using digital logic gates. 2. Design and implementation of code

### ECEN 468 Advanced Logic Design

ECEN 468 Advanced Logic Design Lecture 26: Verilog Operators ECEN 468 Lecture 26 Operators Operator Number of Operands Result Arithmetic 2 Binary word Bitwise 2 Binary word Reduction 1 Bit Logical 2 Boolean

Addition and multiplication Arithmetic is the most basic thing you can do with a computer, but it s not as easy as you might expect! These next few lectures focus on addition, subtraction, multiplication

### Verilog Dataflow Modeling

Verilog Dataflow Modeling Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Spring, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Source:

INDEX Absorption law, 31, 38 Acyclic graph, 35 tree, 36 Addition operators, in VHDL (VHSIC hardware description language), 192 Algebraic division, 105 AND gate, 48 49 Antisymmetric, 34 Applicable input

### DIGITAL SYSTEM DESIGN

DIGITAL SYSTEM DESIGN Prepared By: Engr. Yousaf Hameed Lab Engineer BASIC ELECTRICAL & DIGITAL SYSTEMS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Digital System Design 1 Name: Registration No: Roll No: Semester:

### COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: EC 1312 DIGITAL LOGIC CIRCUITS UNIT I

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: EC 1312 DIGITAL LOGIC CIRCUITS YEAR / SEM: III / V UNIT I NUMBER SYSTEM & BOOLEAN ALGEBRA

### 60-265: Winter ANSWERS Exercise 4 Combinational Circuit Design

60-265: Winter 2010 Computer Architecture I: Digital Design ANSWERS Exercise 4 Combinational Circuit Design Question 1. One-bit Comparator [ 1 mark ] Consider two 1-bit inputs, A and B. If we assume that

### Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make

### *Instruction Matters: Purdue Academic Course Transformation. Introduction to Digital System Design. Module 4 Arithmetic and Computer Logic Circuits

Purdue IM:PACT* Fall 2018 Edition *Instruction Matters: Purdue Academic Course Transformation Introduction to Digital System Design Module 4 Arithmetic and Computer Logic Circuits Glossary of Common Terms

### Numbering Systems. Number Representations Part 1

Introduction Verilog HDL modeling language allows numbers being represented in several radix systems. The underlying circuit processes the number in binary, however, input into and output from such circuits

### Department of Electrical Engineering McGill University ECSE 221 Introduction to Computer Engineering Assignment 2 Combinational Logic

Department of Electrical Engineering McGill University ECSE 221 Introduction to Computer Engineering Assignment 2 Combinational Logic Question 1: Due October 19 th, 2009 A convenient shorthand for specifying

### VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK Academic Year 2018 19 III SEMESTER CS8351-DIGITAL PRINCIPLES AND SYSTEM DESIGN Regulation

### 2. (a) Compare the characteristics of a floppy disk and a hard disk. (b) Discuss in detail memory interleaving. [8+7]

Code No: A109211202 R09 Set No. 2 1. (a) Explain the purpose of the following registers: i. IR ii. PC iii. MDR iv. MAR. (b) Explain with an example the steps in subtraction of two n-digit unsigned numbers.

### Week 7: Assignment Solutions

Week 7: Assignment Solutions 1. In 6-bit 2 s complement representation, when we subtract the decimal number +6 from +3, the result (in binary) will be: a. 111101 b. 000011 c. 100011 d. 111110 Correct answer