EEC 483 Computer Organization. Branch (Control) Hazards

Size: px
Start display at page:

Download "EEC 483 Computer Organization. Branch (Control) Hazards"

Transcription

1 EEC 483 Compter Organization Section 4.8 Branch Hazards Section 4.9 Exceptions Chans Y Branch (Control) Hazards While execting a previos branch, next instrction address might not yet be known. s n i o t c r t s n I Conditional branch Branch target Calclates PC+4. 1 ID Stall 2 Comptes branch target address. Performs branch test & sets PC to target EX Stall E ID EX E Time Step (Clock Cycle) 2 1

2 Branch (Control) Hazards 3 Branch Hazards We can stall the pipeline for every branch instrction Too slow (3 instrctions) Or, contine exection down the seqential instrction stream assming that the branch will not be taken (predict branch not taken ) If the condition is not met, OK! (prediction is sccessfl) If the condition is met, (prediction is wrong) Some nwanted instrctions are in the pipeline! Need to flsh instrctions How do yo compare the above two? If branches are taken half the time, and if it costs little to discard the instrctions, the second approach halves the cost of control hazards 4 2

3 Branch Hazards Redcing the cost of taken branch Branch address procedre : PC+4 EX: Branch address calclation, ZF evalation E: Branch target is selected Selecting branch address at the ID stage to redce the penalty to one cycle from 3 cycles Branch address calclation can be done at ID stage ZF evalation: Eqality can be tested at ID stage by first exclsive ORing respective bits of two read registers and then ANDing all the reslts Control:.Flsh to flsh the instrction in stage It zeros the instrction field of the /ID pipeline register.flsh = (/ID.Branch && ZF)?? is this same as PCSrc??? 5.Flsh verss Zero Control Signals In order to pt a bbble, we nllify the control signals (for stall on a data hazard) Qestions Why can t we se the same techniqe for branch hazard? There is no control signal at stage Is zeroing control signals enogh in case of stall? As long as emread, emwrite, RegWrite are not asserted, any storage vale is not pdated. ALU will do something and UXes will select something, bt it doesn t affect any reslt. What does it mean by flshing? It zeros the instrction field of the /ID pipeline register, which in fact can be decoded as sll $0, $0, $0 In fact, nop = sll $0, $0, $0 6 3

4 Branch Hazards Example 0040 beq $1, $2, 7 ; *4= and $3, $4, $ lw $6, 50($7) branch target is calclated and ZF is checked beq ID EX and --- lw 7 Branch Hazards : Flshing Implements flshing for branch hazards (only one addition!) and it comes from the Control circit.flsh Hazard detection nit x ID/EX EX/E Control 0 x E/ /ID EX PC 4 Instrction memory Shift left 2 Registers = x x ALU Data memory x Sign extend x Forwarding nit 8 4

5 Stalling: What happen in the pipleine? CC1 CC2 CC3 CC4 CC5 CC6 CC7 beq $1,$2, 7 ID EX E add $3,$4,$5 Nll (ID) Nll Nll Nll (EX) (E)() target of beq ID EX E ID stage exectes a nll instrction (sll $0,$0,$0) at CC3 CC5 EX stage exectes a nll instrction (sll $0,$0,$0) at CC4 E stage exectes a nll instrction (sll $0,$0,$0) at 9 stage exectes a nll instrction (sll $0,$0,$0) at CC6.Flsh at CC3 will do. Branch Hazards: Improvement ain techniqes for avoiding stalls: Eliminating branches Branch prediction ove comparison testing to earlier stage Branch delay slots 10 5

6 Branch Hazards: Eliminating Branches Compiler can rewrite code to eliminate some branches. Examples? Branch to a branch. Loop nrolling. branch branch branch? branch? sort of branch branch yes no yes no body body body 11 Branch Hazards: Earlier Branch Testing In given pipeline, tested branch conditional in EX Cold move test to ID Reqires additional mini-alu to perform tests Eliminates one stall cycle Cold potentially increase cycle length Still have one cycle of stall Jst like nconditional branches Assme this optimization 12 6

7 Branch Hazards: Branch Delay Slots While determining next instrction address, go ahead and execte seqentially following instrction(s). Comptes branch target address. Performs branch test & sets PC to target. s n i o t c r t s n I Conditional branch Branch delay Branch target ID EX ID E EX ID E EX Fetches correct target. E Time Step (Clock Cycle) 13 Branch Hazards: Branch Delay Slots Advantage: Can avoid one stall per delay slot. Disadvantages: akes assembly-langage programming more difficlt. Can be difficlt to find appropriate code for slot. Exposes implementation detail that cold change. Later implementations withot a stall mst still emlate slot. ost modern processors avoid 14 7

8 Branch Hazards: Branch Prediction Gess which instrction is next, & start execting it. What if gess is wrong? : Flsh the pipeline Simplest gesses: Always Taken or Never Taken. When to do prediction? Static prediction: compiler Dynamic prediction: processor 15 Dynamic Branch Prediction Branch prediction bffer (branch history table) A small memory that is indexed by the lower portion of the address of the branch instrction and that contains one or more bits indicating whether the branch was recently taken or not. PC Instrction memory Instrction BPB Prediction (T or NT) 16 /ID 8

9 Dynamic Branch Prediction 1-bit predictor T Predict taken N (Not taken) T (Taken) Predict not taken NT Prediction accracy loop 10 times => 1 st :?, 2 nd : correct, 3 rd : correct, beq 9 th : correct, 10 th : incorrect => 80% accracy (Becase the first one is incorrect in the second exection of the same code.) 17 Dynamic Branch Prediction 2-bit predictor What is the prediction accracy with the same example? : 90% 18 9

10 4.9 Exceptions Another form of control hazard involves exceptions. When an arithmetic overflow occrs dring execting add $1, $2, $1 Transfer control to the exception rotine (0x ) This is the same as execting a branch instrction For a taken-branch, we flsh pipeline registers. Branch is tested at the beginning of ID stage. And ths flshing takes place at ID stage. Since only one instrction is following after the instrction at ID, we jst need to flsh that instrction 19 Flsh Control Signals Similar to the taken-branch, we need to flsh pipeline registers. Qestion is which stages pipeline register(s)? Arithmetic overflow is detected at the end of EX stage. And ths flshing takes place at E stage (at the next cycle). Since three following instrctions are already in the pipeline (, ID and EX stages), we need to flsh those three instrctions. Otherwise, $1 can be written back and cannot investigate the case of the overflow. Therefore, we need ID.Flsh and EX.Flsh in addition to.flsh control signal

11 EPC and Case Additionally, EPC is written Case is written

12 Exception in a Pipelined Compter Given the instrction seqence 0x40 sb $11, $2, $4 0x44 and $12, $2, $5 0x48 or $13, $2, $6 0x4c add $1, $2, $1 0x50 slt $15, $6, $7 0x54 lw $16, 50($7)... 0x sw $25, 1000($0) 0x sw $26, 1004($0)... Assme an overflow exception occrs when execting add EPC becomes 0x50 Flsh signals convert the following instrctions to bbbles And start fetching from 0x (exception service roting) and and or instrction prior to and complete

13 Challenges What if more than one instrction generates exceptions? While add cases an overflow exception at CC5 in EX, lw (with wrong opcode) cases an invalid opcode exception at CC5 at It is not OK to generate all flshing signals. And, how does the exception service rotine correctly identify the instrction that cases the exception? => Imprecise exception 25 Precise and Imprecise Exceptions Precise exceptions Hardware (CPU) correctly identifies the offending instrction. And makes sre all prior instrctions complete. All instrctions following it are not allowed to complete their exection and have not modified the process state Imprecise exception Hardware does not garantee it and leaves it p to the operating system to determine which instrction cased the problem. Some instrctions following the offending instrction are allowed to completed their exection and modified the process state. ost of modern CPUs spport Precise exceptions 26 13

Review: Computer Organization

Review: Computer Organization Review: Compter Organization Pipelining Chans Y Landry Eample Landry Eample Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes 3 mintes A B C D Dryer takes 3 mintes

More information

TDT4255 Friday the 21st of October. Real world examples of pipelining? How does pipelining influence instruction

TDT4255 Friday the 21st of October. Real world examples of pipelining? How does pipelining influence instruction Review Friday the 2st of October Real world eamples of pipelining? How does pipelining pp inflence instrction latency? How does pipelining inflence instrction throghpt? What are the three types of hazard

More information

Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts

Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts CS359: Compter Architectre Chapter 3 & Appendi C Pipelining Part A: Basic and Intermediate Concepts Yanyan Shen Department of Compter Science and Engineering Shanghai Jiao Tong University 1 Otline Introdction

More information

What do we have so far? Multi-Cycle Datapath

What do we have so far? Multi-Cycle Datapath What do we have so far? lti-cycle Datapath CPI: R-Type = 4, Load = 5, Store 4, Branch = 3 Only one instrction being processed in datapath How to lower CPI frther? #1 Lec # 8 Spring2 4-11-2 Pipelining pipelining

More information

Enhanced Performance with Pipelining

Enhanced Performance with Pipelining Chapter 6 Enhanced Performance with Pipelining Note: The slides being presented represent a mi. Some are created by ark Franklin, Washington University in St. Lois, Dept. of CSE. any are taken from the

More information

Chapter 6 Enhancing Performance with. Pipelining. Pipelining. Pipelined vs. Single-Cycle Instruction Execution: the Plan. Pipelining: Keep in Mind

Chapter 6 Enhancing Performance with. Pipelining. Pipelining. Pipelined vs. Single-Cycle Instruction Execution: the Plan. Pipelining: Keep in Mind Pipelining hink of sing machines in landry services Chapter 6 nhancing Performance with Pipelining 6 P 7 8 9 A ime ask A B C ot pipelined Assme 3 min. each task wash, dry, fold, store and that separate

More information

Overview of Pipelining

Overview of Pipelining EEC 58 Compter Architectre Pipelining Department of Electrical Engineering and Compter Science Cleveland State University Fndamental Principles Overview of Pipelining Pipelined Design otivation: Increase

More information

PS Midterm 2. Pipelining

PS Midterm 2. Pipelining PS idterm 2 Pipelining Seqential Landry 6 P 7 8 9 idnight Time T a s k O r d e r A B C D 3 4 2 3 4 2 3 4 2 3 4 2 Seqential landry takes 6 hors for 4 loads If they learned pipelining, how long wold landry

More information

Pipelining. Chapter 4

Pipelining. Chapter 4 Pipelining Chapter 4 ake processor rns faster Pipelining is an implementation techniqe in which mltiple instrctions are overlapped in eection Key of making processor fast Pipelining Single cycle path we

More information

CS 251, Winter 2018, Assignment % of course mark

CS 251, Winter 2018, Assignment % of course mark CS 25, Winter 28, Assignment 4.. 3% of corse mark De Wednesday, arch 7th, 4:3P Lates accepted ntil Thrsday arch 8th, am with a 5% penalty. (6 points) In the diagram below, the mlticycle compter from the

More information

Comp 303 Computer Architecture A Pipelined Datapath Control. Lecture 13

Comp 303 Computer Architecture A Pipelined Datapath Control. Lecture 13 Comp 33 Compter Architectre A Pipelined path Lectre 3 Pipelined path with Signals PCSrc IF/ ID ID/ EX EX / E E / Add PC 4 Address Instrction emory RegWr ra rb rw Registers bsw [5-] [2-6] [5-] bsa bsb Sign

More information

EXAMINATIONS 2010 END OF YEAR NWEN 242 COMPUTER ORGANIZATION

EXAMINATIONS 2010 END OF YEAR NWEN 242 COMPUTER ORGANIZATION EXAINATIONS 2010 END OF YEAR COPUTER ORGANIZATION Time Allowed: 3 Hors (180 mintes) Instrctions: Answer all qestions. ake sre yor answers are clear and to the point. Calclators and paper foreign langage

More information

EEC 483 Computer Organization

EEC 483 Computer Organization EEC 483 Compter Organization Chapter 4.4 A Simple Implementation Scheme Chans Y The Big Pictre The Five Classic Components of a Compter Processor Control emory Inpt path Otpt path & Control 2 path and

More information

Review. A single-cycle MIPS processor

Review. A single-cycle MIPS processor Review If three instrctions have opcodes, 7 and 5 are they all of the same type? If we were to add an instrction to IPS of the form OD $t, $t2, $t3, which performs $t = $t2 OD $t3, what wold be its opcode?

More information

CS 251, Winter 2019, Assignment % of course mark

CS 251, Winter 2019, Assignment % of course mark CS 25, Winter 29, Assignment.. 3% of corse mark De Wednesday, arch 3th, 5:3P Lates accepted ntil Thrsday arch th, pm with a 5% penalty. (7 points) In the diagram below, the mlticycle compter from the corse

More information

Chapter 6: Pipelining

Chapter 6: Pipelining CSE 322 COPUTER ARCHITECTURE II Chapter 6: Pipelining Chapter 6: Pipelining Febrary 10, 2000 1 Clothes Washing CSE 322 COPUTER ARCHITECTURE II The Assembly Line Accmlate dirty clothes in hamper Place in

More information

Exceptions and interrupts

Exceptions and interrupts Eceptions and interrpts An eception or interrpt is an nepected event that reqires the CPU to pase or stop the crrent program. Eception handling is the hardware analog of error handling in software. Classes

More information

EXAMINATIONS 2003 END-YEAR COMP 203. Computer Organisation

EXAMINATIONS 2003 END-YEAR COMP 203. Computer Organisation EXAINATIONS 2003 COP203 END-YEAR Compter Organisation Time Allowed: 3 Hors (180 mintes) Instrctions: Answer all qestions. There are 180 possible marks on the eam. Calclators and foreign langage dictionaries

More information

1048: Computer Organization

1048: Computer Organization 8: Compter Organization Lectre 6 Pipelining Lectre6 - pipelining (cwli@twins.ee.nct.ed.tw) 6- Otline An overview of pipelining A pipelined path Pipelined control Data hazards and forwarding Data hazards

More information

1048: Computer Organization

1048: Computer Organization 48: Compter Organization Lectre 5 Datapath and Control Lectre5A - simple implementation (cwli@twins.ee.nct.ed.tw) 5A- Introdction In this lectre, we will try to implement simplified IPS which contain emory

More information

Computer Architecture Chapter 5. Fall 2005 Department of Computer Science Kent State University

Computer Architecture Chapter 5. Fall 2005 Department of Computer Science Kent State University Compter Architectre Chapter 5 Fall 25 Department of Compter Science Kent State University The Processor: Datapath & Control Or implementation of the MIPS is simplified memory-reference instrctions: lw,

More information

The extra single-cycle adders

The extra single-cycle adders lticycle Datapath As an added bons, we can eliminate some of the etra hardware from the single-cycle path. We will restrict orselves to sing each fnctional nit once per cycle, jst like before. Bt since

More information

The final datapath. M u x. Add. 4 Add. Shift left 2. PCSrc. RegWrite. MemToR. MemWrite. Read data 1 I [25-21] Instruction. Read. register 1 Read.

The final datapath. M u x. Add. 4 Add. Shift left 2. PCSrc. RegWrite. MemToR. MemWrite. Read data 1 I [25-21] Instruction. Read. register 1 Read. The final path PC 4 Add Reg Shift left 2 Add PCSrc Instrction [3-] Instrction I [25-2] I [2-6] I [5 - ] register register 2 register 2 Registers ALU Zero Reslt ALUOp em Data emtor RegDst ALUSrc em I [5

More information

Solutions for Chapter 6 Exercises

Solutions for Chapter 6 Exercises Soltions for Chapter 6 Eercises Soltions for Chapter 6 Eercises 6. 6.2 a. Shortening the ALU operation will not affect the speedp obtained from pipelining. It wold not affect the clock cycle. b. If the

More information

Outline. A pipelined datapath Pipelined control Data hazards and forwarding Data hazards and stalls Branch (control) hazards Exception

Outline. A pipelined datapath Pipelined control Data hazards and forwarding Data hazards and stalls Branch (control) hazards Exception Outline A pipelined datapath Pipelined control Data hazards and forwarding Data hazards and stalls Branch (control) hazards Exception 1 4 Which stage is the branch decision made? Case 1: 0 M u x 1 Add

More information

EEC 483 Computer Organization

EEC 483 Computer Organization EEC 83 Compter Organization Chapter.6 A Pipelined path Chans Y Pipelined Approach 2 - Cycle time, No. stages - Resorce conflict E E A B C D 3 E E 5 E 2 3 5 2 6 7 8 9 c.y9@csohio.ed Resorces sed in 5 Stages

More information

Chapter 6: Pipelining

Chapter 6: Pipelining Chapter 6: Pipelining Otline An overview of pipelining A pipelined path Pipelined control Data hazards and forwarding Data hazards and stalls Branch hazards Eceptions Sperscalar and dynamic pipelining

More information

Review Multicycle: What is Happening. Controlling The Multicycle Design

Review Multicycle: What is Happening. Controlling The Multicycle Design Review lticycle: What is Happening Reslt Zero Op SrcA SrcB Registers Reg Address emory em Data Sign etend Shift left Sorce A B Ot [-6] [5-] [-6] [5-] [5-] Instrction emory IR RegDst emtoreg IorD em em

More information

The single-cycle design from last time

The single-cycle design from last time lticycle path Last time we saw a single-cycle path and control nit for or simple IPS-based instrction set. A mlticycle processor fies some shortcomings in the single-cycle CPU. Faster instrctions are not

More information

Instruction fetch. MemRead. IRWrite ALUSrcB = 01. ALUOp = 00. PCWrite. PCSource = 00. ALUSrcB = 00. R-type completion

Instruction fetch. MemRead. IRWrite ALUSrcB = 01. ALUOp = 00. PCWrite. PCSource = 00. ALUSrcB = 00. R-type completion . (Chapter 5) Fill in the vales for SrcA, SrcB, IorD, Dst and emto to complete the Finite State achine for the mlti-cycle datapath shown below. emory address comptation 2 SrcA = SrcB = Op = fetch em SrcA

More information

Quiz #1 EEC 483, Spring 2019

Quiz #1 EEC 483, Spring 2019 Qiz # EEC 483, Spring 29 Date: Jan 22 Name: Eercise #: Translate the following instrction in C into IPS code. Eercise #2: Translate the following instrction in C into IPS code. Hint: operand C is stored

More information

The multicycle datapath. Lecture 10 (Wed 10/15/2008) Finite-state machine for the control unit. Implementing the FSM

The multicycle datapath. Lecture 10 (Wed 10/15/2008) Finite-state machine for the control unit. Implementing the FSM Lectre (Wed /5/28) Lab # Hardware De Fri Oct 7 HW #2 IPS programming, de Wed Oct 22 idterm Fri Oct 2 IorD The mlticycle path SrcA Today s objectives: icroprogramming Etending the mlti-cycle path lti-cycle

More information

Review. How to represent real numbers

Review. How to represent real numbers PCWrite PC IorD Review ALUSrcA emread Address Write data emory emwrite em Data IRWrite [3-26] [25-2] [2-6] [5-] [5-] RegDst Read register Read register 2 Write register Write data RegWrite Read data Read

More information

CS 251, Spring 2018, Assignment 3.0 3% of course mark

CS 251, Spring 2018, Assignment 3.0 3% of course mark CS 25, Spring 28, Assignment 3. 3% of corse mark De onday, Jne 25th, 5:3 P. (5 points) Consider the single-cycle compter shown on page 6 of this assignment. Sppose the circit elements take the following

More information

Lecture 7. Building A Simple Processor

Lecture 7. Building A Simple Processor Lectre 7 Bilding A Simple Processor Christos Kozyrakis Stanford University http://eeclass.stanford.ed/ee8b C. Kozyrakis EE8b Lectre 7 Annoncements Upcoming deadlines Lab is de today Demo by 5pm, report

More information

Lab 8 (All Sections) Prelab: ALU and ALU Control

Lab 8 (All Sections) Prelab: ALU and ALU Control Lab 8 (All Sections) Prelab: and Control Name: Sign the following statement: On my honor, as an Aggie, I have neither given nor received nathorized aid on this academic work Objective In this lab yo will

More information

1 Hazards COMP2611 Fall 2015 Pipelined Processor

1 Hazards COMP2611 Fall 2015 Pipelined Processor 1 Hazards Dependences in Programs 2 Data dependence Example: lw $1, 200($2) add $3, $4, $1 add can t do ID (i.e., read register $1) until lw updates $1 Control dependence Example: bne $1, $2, target add

More information

Midnight Laundry. IC220 Set #19: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Return to Chapter 4

Midnight Laundry. IC220 Set #19: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Return to Chapter 4 IC220 Set #9: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life Return to Chapter 4 Midnight Laundry Task order A B C D 6 PM 7 8 9 0 2 2 AM 2 Smarty Laundry Task order A B C D 6 PM

More information

4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language 345.e1

4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware Design Language 345.e1 .3 Advanced Topic: An Introdction to Digital Design Using a Hardware Design Langage 35.e.3 Advanced Topic: An Introdction to Digital Design Using a Hardware Design Langage to Describe and odel a Pipeline

More information

CS 251, Winter 2018, Assignment % of course mark

CS 251, Winter 2018, Assignment % of course mark CS 25, Winter 28, Assignment 3.. 3% of corse mark De onday, Febrary 26th, 4:3 P Lates accepted ntil : A, Febrary 27th with a 5% penalty. IEEE 754 Floating Point ( points): (a) (4 points) Complete the following

More information

Improve performance by increasing instruction throughput

Improve performance by increasing instruction throughput Improve performance by increasing instruction throughput Program execution order Time (in instructions) lw $1, 100($0) fetch 2 4 6 8 10 12 14 16 18 ALU Data access lw $2, 200($0) 8ns fetch ALU Data access

More information

Winter 2013 MIDTERM TEST #2 Wednesday, March 20 7:00pm to 8:15pm. Please do not write your U of C ID number on this cover page.

Winter 2013 MIDTERM TEST #2 Wednesday, March 20 7:00pm to 8:15pm. Please do not write your U of C ID number on this cover page. page of 7 University of Calgary Departent of Electrical and Copter Engineering ENCM 369: Copter Organization Lectre Instrctors: Steve Noran and Nor Bartley Winter 23 MIDTERM TEST #2 Wednesday, March 2

More information

1048: Computer Organization

1048: Computer Organization 48: Compter Organization Lectre 5 Datapath and Control Lectre5B - mlticycle implementation (cwli@twins.ee.nct.ed.tw) 5B- Recap: A Single-Cycle Processor PCSrc 4 Add Shift left 2 Add ALU reslt PC address

More information

PART I: Adding Instructions to the Datapath. (2 nd Edition):

PART I: Adding Instructions to the Datapath. (2 nd Edition): EE57 Instrctor: G. Pvvada ===================================================================== Homework #5b De: check on the blackboard =====================================================================

More information

Prof. Kozyrakis. 1. (10 points) Consider the following fragment of Java code:

Prof. Kozyrakis. 1. (10 points) Consider the following fragment of Java code: EE8 Winter 25 Homework #2 Soltions De Thrsday, Feb 2, 5 P. ( points) Consider the following fragment of Java code: for (i=; i

More information

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12 (2) Lecture notes from MKP, H. H. Lee and S.

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12 (2) Lecture notes from MKP, H. H. Lee and S. Pipelined Datapath Lecture notes from KP, H. H. Lee and S. Yalamanchili Sections 4.5 4. Practice Problems:, 3, 8, 2 ing (2) Pipeline Performance Assume time for stages is ps for register read or write

More information

Computer Architecture

Computer Architecture Compter Architectre Lectre 4: Intro to icroarchitectre: Single- Cycle Dr. Ahmed Sallam Sez Canal University Based on original slides by Prof. Onr tl Review Compter Architectre Today and Basics (Lectres

More information

Instruction word R0 R1 R2 R3 R4 R5 R6 R8 R12 R31

Instruction word R0 R1 R2 R3 R4 R5 R6 R8 R12 R31 4.16 Exercises 419 Exercise 4.11 In this exercise we examine in detail how an instruction is executed in a single-cycle datapath. Problems in this exercise refer to a clock cycle in which the processor

More information

CSE Lecture 13/14 In Class Handout For all of these problems: HAS NOT CANNOT Add Add Add must wait until $5 written by previous add;

CSE Lecture 13/14 In Class Handout For all of these problems: HAS NOT CANNOT Add Add Add must wait until $5 written by previous add; CSE 30321 Lecture 13/14 In Class Handout For the sequence of instructions shown below, show how they would progress through the pipeline. For all of these problems: - Stalls are indicated by placing the

More information

Computer Architecture

Computer Architecture Compter Architectre Lectre 4: Intro to icroarchitectre: Single- Cycle Dr. Ahmed Sallam Sez Canal University Spring 25 Based on original slides by Prof. Onr tl Review Compter Architectre Today and Basics

More information

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12 Pipelined Datapath Lecture notes from KP, H. H. Lee and S. Yalamanchili Sections 4.5 4. Practice Problems:, 3, 8, 2 ing Note: Appendices A-E in the hardcopy text correspond to chapters 7- in the online

More information

14:332:331 Pipelined Datapath

14:332:331 Pipelined Datapath 14:332:331 Pipelined Datapath I n s t r. O r d e r Inst 0 Inst 1 Inst 2 Inst 3 Inst 4 Single Cycle Disadvantages & Advantages Uses the clock cycle inefficiently the clock cycle must be timed to accommodate

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 27: Midterm2 review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Midterm 2 Review Midterm will cover Section 1.6: Processor

More information

LECTURE 3: THE PROCESSOR

LECTURE 3: THE PROCESSOR LECTURE 3: THE PROCESSOR Abridged version of Patterson & Hennessy (2013):Ch.4 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU

More information

Hardware Design Tips. Outline

Hardware Design Tips. Outline Hardware Design Tips EE 36 University of Hawaii EE 36 Fall 23 University of Hawaii Otline Verilog: some sbleties Simlators Test Benching Implementing the IPS Actally a simplified 6 bit version EE 36 Fall

More information

What do we have so far? Multi-Cycle Datapath (Textbook Version)

What do we have so far? Multi-Cycle Datapath (Textbook Version) What do we have so far? ulti-cycle Datapath (Textbook Version) CPI: R-Type = 4, Load = 5, Store 4, Branch = 3 Only one instruction being processed in datapath How to lower CPI further? #1 Lec # 8 Summer2001

More information

Chapter Six. Dataı access. Reg. Instructionı. fetch. Dataı. Reg. access. Dataı. Reg. access. Dataı. Instructionı fetch. 2 ns 2 ns 2 ns 2 ns 2 ns

Chapter Six. Dataı access. Reg. Instructionı. fetch. Dataı. Reg. access. Dataı. Reg. access. Dataı. Instructionı fetch. 2 ns 2 ns 2 ns 2 ns 2 ns Chapter Si Pipelining Improve perfomance by increasing instruction throughput eecutionı Time lw $, ($) 2 6 8 2 6 8 access lw $2, 2($) 8 ns access lw $3, 3($) eecutionı Time lw $, ($) lw $2, 2($) 2 ns 8

More information

CSSE232 Computer Architecture I. Mul5cycle Datapath

CSSE232 Computer Architecture I. Mul5cycle Datapath CSSE232 Compter Architectre I Ml5cycle Datapath Class Stats Next 3 days : Ml5cycle datapath ing Ml5cycle datapath is not in the book! How long do instrc5ons take? ALU 2ns Mem 2ns Reg File 1ns Everything

More information

Full Datapath. Chapter 4 The Processor 2

Full Datapath. Chapter 4 The Processor 2 Pipelining Full Datapath Chapter 4 The Processor 2 Datapath With Control Chapter 4 The Processor 3 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory

More information

The Processor: Improving the performance - Control Hazards

The Processor: Improving the performance - Control Hazards The Processor: Improving the performance - Control Hazards Wednesday 14 October 15 Many slides adapted from: and Design, Patterson & Hennessy 5th Edition, 2014, MK and from Prof. Mary Jane Irwin, PSU Summary

More information

Control Hazards - branching causes problems since the pipeline can be filled with the wrong instructions.

Control Hazards - branching causes problems since the pipeline can be filled with the wrong instructions. Control Hazards - branching causes problems since the pipeline can be filled with the wrong instructions Stage Instruction Fetch Instruction Decode Execution / Effective addr Memory access Write-back Abbreviation

More information

Chapter 4 The Processor 1. Chapter 4B. The Processor

Chapter 4 The Processor 1. Chapter 4B. The Processor Chapter 4 The Processor 1 Chapter 4B The Processor Chapter 4 The Processor 2 Control Hazards Branch determines flow of control Fetching next instruction depends on branch outcome Pipeline can t always

More information

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Introduction Chapter 4.1 Chapter 4.2 Review: MIPS (RISC) Design Principles Simplicity favors regularity fixed size instructions small number

More information

T = I x CPI x C. Both effective CPI and clock cycle C are heavily influenced by CPU design. CPI increased (3-5) bad Shorter cycle good

T = I x CPI x C. Both effective CPI and clock cycle C are heavily influenced by CPU design. CPI increased (3-5) bad Shorter cycle good CPU performance equation: T = I x CPI x C Both effective CPI and clock cycle C are heavily influenced by CPU design. For single-cycle CPU: CPI = 1 good Long cycle time bad On the other hand, for multi-cycle

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University The Processor Logic Design Conventions Building a Datapath A Simple Implementation Scheme An Overview of Pipelining Pipelined

More information

Pipelining. Ideal speedup is number of stages in the pipeline. Do we achieve this? 2. Improve performance by increasing instruction throughput ...

Pipelining. Ideal speedup is number of stages in the pipeline. Do we achieve this? 2. Improve performance by increasing instruction throughput ... CHAPTER 6 1 Pipelining Instruction class Instruction memory ister read ALU Data memory ister write Total (in ps) Load word 200 100 200 200 100 800 Store word 200 100 200 200 700 R-format 200 100 200 100

More information

Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard

Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard Consider: a = b + c; d = e - f; Assume loads have a latency of one clock cycle:

More information

Lecture 6: Microprogrammed Multi Cycle Implementation. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 6: Microprogrammed Multi Cycle Implementation. James C. Hoe Department of ECE Carnegie Mellon University 8 447 Lectre 6: icroprogrammed lti Cycle Implementation James C. Hoe Department of ECE Carnegie ellon University 8 447 S8 L06 S, James C. Hoe, CU/ECE/CALC, 208 Yor goal today Hosekeeping nderstand why

More information

COMPUTER ORGANIZATION AND DESI

COMPUTER ORGANIZATION AND DESI COMPUTER ORGANIZATION AND DESIGN 5 Edition th The Hardware/Software Interface Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count Determined by ISA and compiler

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 153 Design of Operating Systems Spring 18 Lectre 3: OS model and Architectral Spport Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Last time/today

More information

Chapter 4 (Part II) Sequential Laundry

Chapter 4 (Part II) Sequential Laundry Chapter 4 (Part II) The Processor Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu Sequential Laundry 6 P 7 8 9 10 11 12 1 2 A T a s k O r d e r A B C D 30 30 30 30 30 30 30 30 30 30

More information

CS 251, Winter 2018, Assignment % of course mark

CS 251, Winter 2018, Assignment % of course mark CS 251, Winter 2018, Assignment 5.0.4 3% of course mark Due Wednesday, March 21st, 4:30PM Lates accepted until 10:00am March 22nd with a 15% penalty 1. (10 points) The code sequence below executes on a

More information

ECE473 Computer Architecture and Organization. Pipeline: Control Hazard

ECE473 Computer Architecture and Organization. Pipeline: Control Hazard Computer Architecture and Organization Pipeline: Control Hazard Lecturer: Prof. Yifeng Zhu Fall, 2015 Portions of these slides are derived from: Dave Patterson UCB Lec 15.1 Pipelining Outline Introduction

More information

Pipeline Hazards. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Pipeline Hazards. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Pipeline Hazards Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Hazards What are hazards? Situations that prevent starting the next instruction

More information

CSEE 3827: Fundamentals of Computer Systems

CSEE 3827: Fundamentals of Computer Systems CSEE 3827: Fundamentals of Computer Systems Lecture 21 and 22 April 22 and 27, 2009 martha@cs.columbia.edu Amdahl s Law Be aware when optimizing... T = improved Taffected improvement factor + T unaffected

More information

Lecture 8: Data Hazard and Resolution. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 8: Data Hazard and Resolution. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 8: Data Hazard and Resolution James C. Hoe Department of ECE Carnegie ellon University 18 447 S18 L08 S1, James C. Hoe, CU/ECE/CALC, 2018 Your goal today Housekeeping detect and resolve

More information

PIPELINING. Pipelining: Natural Phenomenon. Pipelining. Pipelining Lessons

PIPELINING. Pipelining: Natural Phenomenon. Pipelining. Pipelining Lessons Pipelining: Natral Phenomenon Landry Eample: nn, rian, Cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes 30 mintes C D Dryer takes 0 mintes PIPELINING Folder takes 20 mintes

More information

Computer Architecture. Lecture 6: Pipelining

Computer Architecture. Lecture 6: Pipelining Compter Architectre Lectre 6: Pipelining Dr. Ahmed Sallam Based on original slides by Prof. Onr tl Agenda for Today & Net Few Lectres Single-cycle icroarchitectres lti-cycle and icroprogrammed icroarchitectres

More information

SI232 Set #20: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Chapter 6 ADMIN. Reading for Chapter 6: 6.1,

SI232 Set #20: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Chapter 6 ADMIN. Reading for Chapter 6: 6.1, SI232 Set #20: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life Chapter 6 ADMIN ing for Chapter 6: 6., 6.9-6.2 2 Midnight Laundry Task order A 6 PM 7 8 9 0 2 2 AM B C D 3 Smarty

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN 5 Edition th The Hardware/Software Interface Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count CPI and Cycle time Determined

More information

Suggested Readings! Recap: Pipelining improves throughput! Processor comparison! Lecture 17" Short Pipelining Review! ! Readings!

Suggested Readings! Recap: Pipelining improves throughput! Processor comparison! Lecture 17 Short Pipelining Review! ! Readings! 1! 2! Suggested Readings!! Readings!! H&P: Chapter 4.5-4.7!! (Over the next 3-4 lectures)! Lecture 17" Short Pipelining Review! 3! Processor components! Multicore processors and programming! Recap: Pipelining

More information

ECE154A Introduction to Computer Architecture. Homework 4 solution

ECE154A Introduction to Computer Architecture. Homework 4 solution ECE154A Introduction to Computer Architecture Homework 4 solution 4.16.1 According to Figure 4.65 on the textbook, each register located between two pipeline stages keeps data shown below. Register IF/ID

More information

Lecture 9: Microcontrolled Multi-Cycle Implementations

Lecture 9: Microcontrolled Multi-Cycle Implementations 8-447 Lectre 9: icroled lti-cycle Implementations James C. Hoe Dept of ECE, CU Febrary 8, 29 S 9 L9- Annoncements: P&H Appendi D Get started t on Lab Handots: Handot #8: Project (on Blackboard) Single-Cycle

More information

Pipelining. CSC Friday, November 6, 2015

Pipelining. CSC Friday, November 6, 2015 Pipelining CSC 211.01 Friday, November 6, 2015 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory register file ALU data memory register file Not

More information

4. What is the average CPI of a 1.4 GHz machine that executes 12.5 million instructions in 12 seconds?

4. What is the average CPI of a 1.4 GHz machine that executes 12.5 million instructions in 12 seconds? Chapter 4: Assessing and Understanding Performance 1. Define response (execution) time. 2. Define throughput. 3. Describe why using the clock rate of a processor is a bad way to measure performance. Provide

More information

Chapter 4 The Processor 1. Chapter 4A. The Processor

Chapter 4 The Processor 1. Chapter 4A. The Processor Chapter 4 The Processor 1 Chapter 4A The Processor Chapter 4 The Processor 2 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

EC 413 Computer Organization - Fall 2017 Problem Set 3 Problem Set 3 Solution

EC 413 Computer Organization - Fall 2017 Problem Set 3 Problem Set 3 Solution EC 413 Computer Organization - Fall 2017 Problem Set 3 Problem Set 3 Solution Important guidelines: Always state your assumptions and clearly explain your answers. Please upload your solution document

More information

5 Performance Evaluation

5 Performance Evaluation 5 Performance Evalation his chapter evalates the performance of the compared to the MIP, and FMIP individal performances. We stdy the packet loss and the latency to restore the downstream and pstream of

More information

Lecture 13: Exceptions and Interrupts

Lecture 13: Exceptions and Interrupts 18 447 Lectre 13: Eceptions and Interrpts S 10 L13 1 James C. Hoe Dept of ECE, CU arch 1, 2010 Annoncements: Handots: Spring break is almost here Check grades on Blackboard idterm 1 graded Handot #9: Lab

More information

The Processor Pipeline. Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes.

The Processor Pipeline. Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes. The Processor Pipeline Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes. Pipeline A Basic MIPS Implementation Memory-reference instructions Load Word (lw) and Store Word (sw) ALU instructions

More information

CS 351 Exam 2 Mon. 11/2/2015

CS 351 Exam 2 Mon. 11/2/2015 CS 351 Exam 2 Mon. 11/2/2015 Name: Rules and Hints The MIPS cheat sheet and datapath diagram are attached at the end of this exam for your reference. You may use one handwritten 8.5 11 cheat sheet (front

More information

CSE Introduction to Computer Architecture Chapter 5 The Processor: Datapath & Control

CSE Introduction to Computer Architecture Chapter 5 The Processor: Datapath & Control CSE-45432 Introdction to Compter Architectre Chapter 5 The Processor: Datapath & Control Dr. Izadi Data Processor Register # PC Address Registers ALU memory Register # Register # Address Data memory Data

More information

The Disciplined Flood Protocol in Sensor Networks

The Disciplined Flood Protocol in Sensor Networks The Disciplined Flood Protocol in Sensor Networks Yong-ri Choi and Mohamed G. Goda Department of Compter Sciences The University of Texas at Astin, U.S.A. fyrchoi, godag@cs.texas.ed Hssein M. Abdel-Wahab

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

CSE 141 Computer Architecture Summer Session I, Lectures 10 Advanced Topics, Memory Hierarchy and Cache. Pramod V. Argade

CSE 141 Computer Architecture Summer Session I, Lectures 10 Advanced Topics, Memory Hierarchy and Cache. Pramod V. Argade CSE 141 Compter Architectre Smmer Session I, 2004 Lectres 10 Advanced Topics, emory Hierarchy and Cache Pramod V. Argade CSE141: Introdction to Compter Architectre Instrctor: TA: Pramod V. Argade (p2argade@cs.csd.ed)

More information

CPE 335 Computer Organization. Basic MIPS Architecture Part I

CPE 335 Computer Organization. Basic MIPS Architecture Part I CPE 335 Computer Organization Basic MIPS Architecture Part I Dr. Iyad Jafar Adapted from Dr. Gheith Abandah slides http://www.abandah.com/gheith/courses/cpe335_s8/index.html CPE232 Basic MIPS Architecture

More information

Computer Organization and Structure

Computer Organization and Structure Computer Organization and Structure 1. Assuming the following repeating pattern (e.g., in a loop) of branch outcomes: Branch outcomes a. T, T, NT, T b. T, T, T, NT, NT Homework #4 Due: 2014/12/9 a. What

More information

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor.

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor. COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor - Introduction

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition The Processor - Introduction

More information

Pipelining concepts The DLX architecture A simple DLX pipeline Pipeline Hazards and Solution to overcome

Pipelining concepts The DLX architecture A simple DLX pipeline Pipeline Hazards and Solution to overcome Thoai Nam Pipelining concepts The DLX architecture A simple DLX pipeline Pipeline Hazards and Solution to overcome Reference: Computer Architecture: A Quantitative Approach, John L Hennessy & David a Patterson,

More information